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Estimation effects on stop-loss premiums

under dependence∗

Willem Albers†and Wilbert C.M. Kallenberg‡

Abstract

Even a small amount of dependence in large insurance portfolios can lead to huge

errors in relevant risk measures, such as stop-loss premiums. This has been shown in

a model where the majority consists of ordinary claims and a small fraction of special

claims. The special claims are dependent in the sense that a whole group is exposed

to damage. In this model, the parameters have to be estimated. The effect of the

estimation step is studied here. The estimation error is dominated by the part of

the parameters related to the special claims, because by their nature we do not have

many observations of them. Although the estimation error in this way is restricted

to a few parameters, it turns out that it may be quite substantial. Upper and lower

confidence bounds are given for the stop-loss premium, thus protecting against the

estimation effect.

1 Introduction. A well-known risk measure for large insurance portfolios is the so

called stop-loss premium E(S − a)+ = E{max(0, S − a)}, where S denotes the sum of
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the individual claims during a given reference period and a is called the retention. The

classical model takes S as a sum of independent terms. This is often not realistic. On

the other side of the spectrum, the assumption of comonotonicity produces astronomical

effects due to its strong form of dependence. In practice, the dependence will be at a much

lower level. However, it has been shown in Albers [1], Reijnen et al. [6] and Albers et al.

[2] that even small dependencies can lead to huge errors in relevant risk measures, such as

stop-loss premiums. Attributing on average a fraction of merely 1%-5% of the total claim

amount to a common risk part turns out to already allow increases of stop-loss premiums

by 200%-600%, when dealing with normally distributed claim size distributions, or even

up to 50000% for more realistic skewed claim size distributions; see Albers [1] and Reijnen

et al. [6]. Therefore, this small fraction of dependence should certainly not be ignored.

On the other hand, complete comonotonicity seems to be too much. In fact, on the scale

independent-comonotone the model with a (small) common risk part is still close to the

independent end-point. For a more detailed discussion on this topic we refer to Reijnen et

al. [6], pp. 247-249.

The previous results were obtained in a rather simple model. A more general and

flexible model has been presented in Albers et al. [2]. The model makes a distinction

between ”ordinary” claims, where independence may be assumed, and a small fraction of

”special” claims, where dependence appears in the form that a whole group is exposed to

damage, due to a special cause (such as an epidemic, an accident, a hurricane etc.). The

model is general in the sense that it allows groups of varying sizes, which moreover may

overlap and on the other hand do not have to span the whole portfolio. It is flexible, in

the sense that it does not require information which is and will remain unavailable from

the data. For example, it sometimes may not be easy to identify those individuals who

are exposed to a special cause, but did not file a claim. In fact, the model only needs the

realized number of special claims.

As usual in stochastic models parameters appear which have to be estimated. Replacing

the unknown model parameters by their estimated counterparts obtained from the data,

will result in estimation errors. Just as with ignoring the dependence effect, it is too

optimistic to act as if the estimation errors are negligible, unless we have a large number

of observations. This topic, the effect of the estimation step, is exactly the issue which is

addressed in the present paper.

In Section 2 the model is introduced. It turns out that the model is too complicated
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to allow an exact evaluation of the estimation effects in such a way that transparent con-

clusions can be drawn. Therefore, we use some approximations. The accuracy of these

approximations have been settled in Lukocius [4]. Two aspects play a role when consid-

ering the effect of the estimation step. Obviously, in the first place the accuracy of the

estimators, but secondly, also the fluctuation of the stop-loss premium as function of the

parameters. The set of parameters may be divided into two parts, those concerning the

ordinary claims and those who are inserted in particular for the special causes. For the first

part we have a lot of data and these parameters can be estimated very accurately. Due to

their nature, special causes do not appear very often and hence estimation of the parame-

ters linked up with the common risk part is much less accurate. As remarked before, their

influence on the final outcome, even when a rather small part is due to a common risk, is

quite large and hence estimation of the parameters connected with the special causes is the

most important issue.

In Section 3 the needed structure of the observations to obtain estimators is given

and the estimators based on them are derived. The fluctuations of the stop-loss premium

are discussed in Section 4. The behavior of the estimators is the subject of Section 5.

Asymptotic normality of the estimators, with respect to the expected total number of

claims tending to infinity, is derived. The results of Sections 4 and 5 clearly show that the

estimation effect is dominated by the part of the parameters related to the special causes.

This is one of the main conclusions of the paper, implying that we only have to worry

about that part of the estimation procedure, which simplifies matters. At the same time

it is shown that the influence of these remaining estimators in general will be substantial.

Hence, the estimation step cannot be ignored. That is the second main conclusion of the

paper. In Section 6 it is shown how we can protect against the estimation error. Confidence

bounds are derived for that purpose.

The paper is written in such a way that it can be extended in an easy way to other

risk measures as for instance the value at risk, since in the theory no special properties of

the stop-loss premium are used. Therefore, this part of the paper can be easily generalized

with appropriate modifications when other risk measures are applied. Obviously, this does

not hold for the numerical calculations, as presented in the tables and figures, where the

particular form of the (accurate approximation of the) stop-loss premium, given in the

Appendix, is explicitly used.
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2 The model. The model is a so called collective model and consists of two parts, the

ordinary claims and the special claims, where whole groups are involved. Examples are

man and wife both insured in the same portfolio, carpoolers using a collective company

insurance, catastrophes like hurricanes or floods hitting numerous insured at the same time.

For more details we refer to Albers et al. [2], where the relation with the individual model

is given and the impact of the model parameters is discussed, but see also Remark 2.1.

Here we mainly restrict attention to a brief description of the model.

We use the following notations

N : number of the ordinary claims,

Ci : ith claim size of the ordinary claims,

H : number of groups,

Gk : kth group size,

Djk : jth claim size in kth group.

The total sum of claims is given by

S =
N∑

i=1

Ci +
H∑

k=1

Gk∑
j=1

Djk. (2.1)

Here we clearly see the two parts. The first sum concerns the ordinary claims, the second

sum refers to the special claims. They occur groupswise, thus representing dependence in

the total claim size. The occurrence of a special claim does not result in a single claim, but

in a lot of claims together. So, in this part comonotonicity appears: the whole group has

damage.

We assume that C1, C2, . . . , N,H, G1, G2, . . . , D11, D12, ... are independent random vari-

ables. The name ’dependence model’ does not come from the dependence of the claim

sizes, but from the clustering of claims in time or space or whatever. As an illustrative

example Lukocius [5] simulates a flu epidemic inside a large company, considering several

departments as potential places of the mutual infection. The payments which people re-

ceive during their illness period can be considered as claims and the sum of all these claims

then is modeled as S. The groups of a mutual infection (people which got infection from

each other) are considered as groups of a common risk, producing the special claims, while

claims from people which got the infection independently or suffer from other types of

illness fall in the category of ordinary claims.
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All the Ci and Djk have the same distribution and also the Gk have a common distribu-

tion. Of course, it is of interest to consider the general case, where the distribution of the

C’s and that of the D’s are different, but we really want to keep the number of additional

parameters (above that of the independence model) limited. Contacts with practitioners

indicate that otherwise the model becomes quickly too complicated for practical imple-

mentation. Hence, the present model may still be a simplification of reality, but it will be

much less so than the (included) classical independence model (corresponding to ε = 0),

because employing more parameters in principle guarantees a better fit to reality. (Recall

the remark, attributed to Tukey: ”All models are wrong, but some are more wrong than

others.”)

The supposed distributions of the random variables are as follows. Here P denotes the

Poisson distribution and µG = EG.

Ci, Djk : Gamma, inverse Gaussian or lognormal

N : P (λ(1− ε))

H : P

(
ελ

µG

)

Gk : P (L) with L : Gamma or inverse Gaussian.

The idea is that a fraction ε of λ, the total expected number of claims, is due to special

causes. As ε typically will be (very) small, this clearly shows that the dependence part

is really small in terms of the fraction of total expected number of claims. Nevertheless,

this may lead to a huge total claim amount, with major consequences for the stop-loss

premiums. Since special claims do not occur that often, a pretty high aggregation level

is needed. The assumption, therefore, that all special claims lead to similar group sizes,

seems rather awkward. Hence Gk, the number of realized claims in the kth group, follows

an overdispersed Poisson distribution.

To obtain independence of H, G1, G2, . . . , the following assumptions are sufficient: take

H,L1, L2, . . . independent, let G1|H = h, L1 = l1, L2 = l2, . . . , G2|H = h, L1 = l1, L2 =

l2, ... be independent and assume that the distribution of Gk|H = h, L1 = l1, L2 = l2, . . .

depends only on lk. Then it is easily seen that

P (H = h,G1 = g1, . . . , Gh = gh) = P (H = h)P (G1 = g1) . . . P (Gh = gh).

So, essentially, we first select an Li, and given its outcome li we subsequently let Gi follow
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a Poisson distribution with parameter li, thus allowing more variation in the group size

than in case of a Poisson distribution with a fixed parameter.

Remark 2.1. As stated before, the dependence comes in, because a whole group of claims

accumulates together. To get some additional feeling for the area the present model does

cover we translate (2.1) to a corresponding individual model. Consider a large portfolio

with m insured. The portfolio is divided into h groups, each of group size g. The jth

insured in the ith group has, just like everybody else, a claim probability (1− ε) q for an

ordinary claim. Let Xij = 1 denote that the jth insured in the ith group has an ordinary

claim and otherwise Xij = 0. Then the first term of the total claim amount S is given by

h∑
i=1

g∑
j=1

XijCij

with P (Xij = 1) = 1 − P (Xij = 0) = (1− ε) q and Cij the claim amount of an ordinary

claim. This part of the model is in fact nothing else than the usual independence model.

But in addition to it, the whole ith group may be hit all together, due to a special cause,

in which case each member of the group has damage. Here we clearly see the dependence:

if one member of the group has damage due to a special cause, all the others of the group

have a claim as well. Denoting Vi = 1 when the ith group has been hit and 0 otherwise,

the second term of S is written as
h∑

i=1

g∑
j=1

ViDij

with P (Vi = 1) = 1−P (Vi = 0) = εq and Dij the claim amount of the jth insured in the ith

group in case of a special claim. Consider two members of the same group, say the jth and

j∗th member of group 1. Their contribution to the total claim amount due to special causes

is: V1D1j and V1D1j∗ . Clearly, their claims V1D1j and V1D1j∗ are positively dependent,

since they have V1 in common. The number N =
∑h

i=1

∑g
j=1 Xij of ordinary claims has a

binomial distribution with parameters m = hg and (1− ε) q (for short: Bin(m, (1− ε) q)).

Similarly, the number H =
∑h

i=1 Vi of groups that have been hit is Bin(h, εq) with h =

m/g. Writing λ = mq and replacing Bin(m, (1− ε) q) and Bin(h, εq) by P (λ(1− ε)) and

P (λε/g), respectively, where we have used that hεq = mεq/g = λε/g, gives the collective

model

S =
N∑

i=1

Ci +
H∑

k=1

g∑
j=1

Djk.
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To allow groups of varying sizes, which moreover may overlap and on the other hand do

not have to span the whole portfolio, g is replaced in (2.1) by the random variable Gk, the

number of realized claims in the kth group. In this way a more general and flexible model

is obtained. For more details we refer to Albers et al. [3].

The choices of the distributions of N,H and G is already discussed in Remark 2.1.

Let us now concentrate on that of C and L and on the range of parameters for all the

distributions. There are quite a few claim size distributions available in literature. We

largely follow Reijnen et al. [6] and consider for the distribution of C the widely-used

gamma, inverse-Gaussian and lognormal families. A prototype distribution for L is the

gamma distribution. The simulation experiment in Lukocius [5] shows that indeed this

distribution performs nicely. A second choice that proves to be quite suitable is the inverse

Gaussian distribution. A third choice is the lognormal family. However, this turns out to

be too extreme: huge cumulants result and the tails really seem too heavy to adequately

model the mixing aspect of G.

Let the standard deviation of a random variable be denoted by σ and let γ = σ/µ be

its coefficient of variation. The range of parameters that is of interest is given by

λ ≥ 400, ε ≤ 0.05, 5 ≤ µG = µL ≤ 20, 0.05 ≤ γC ≤ 2.5 (2.2)

γL ≤ 1.5 for L : Gamma, γL ≤ 2.5 for L : inverse Gaussian.

Let us now discuss this choice briefly. For more detailed information about the choice of the

range of parameters we refer to Albers et al. [2], Section 5. As written in the Introduction

the model is too complicated to allow an exact evaluation of the estimation effects in such

a way that transparent conclusions can be drawn. Therefore, we use some approximations.

Obviously, these approximations should be sufficiently accurate. Therefore, a value of

λ ≥ 400 seems to be minimally required, because otherwise the events of interest will be

encountered only very rarely. For instance, when λ = 100 and ε = 0.02, the expected

number of special claims is merely 2. If we take µG = 10, the expected number of such

groups would only be 0.2. This really seems to be too small. Because a small fraction

of dependence can create big problems already, we restrict attention to ε ≤ 0.05. The

lumpiness aspect is already present in the model, studied in Reijnen et al. [6]. So, we

simply take the same range for µG = µL as in that paper. The choice of the range of γC is

based on the work of Reijnen et al. [6], where the skewness of C played an important role

in the rule of thumb, which provides an accurate approximation. The extensive numerical
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study in Chapter 3 of Lukocius [5] shows that when L follows a gamma distribution γL ≤ 1.5

works fine and when L follows an inverse Gaussian distribution even γL ≤ 2.5 is fine here.

Remark 2.2. The group size G has expectation µG, which in the range of parameters of

interest varies between 5 and 20. Hence, G will as a rule be at least equal to 2. However,

a value of G equal to 1 is possible. In that case we do not really have a group and it will

not be recognized as such. Therefore, one might argue that we should restrict attention to

distributions of G starting with 2. For most of the theory developed here this will cause no

problem: the results continue to hold for general G. In view of that we will often give the

results for this general setting, using the parametrization µG, γG instead of µL, γL (see also

Remark 3.1). By definition of G the relation between the two forms of parametrization is

simply given by

µG = E (E(G|L)) = µL,

γ2
G = var

(
G

µL

)
= µ−2

L {var(E(G|L)) + E(var(G|L))} = µ−2
L {var(L) + EL} = γ2

L + µ−1
L .

On the other hand, in practice we do not have to worry about the restriction, because a

value of G equal to 1 will occur only rarely and we may ignore it without making large

mistakes.

Remark 2.3. Many other generalizations of the model than the one already mentioned

(different distributions for the C’s and D’s) can be easily thought of. To give but a few

examples: the Dij can have different distributions for varying i, all kind of dependencies

can exist between the random variables involved, e.g. positive correlation between the

Gi and the Dij, the distributions of N and H do not necessarily have to be Poisson etc.

However, as explained before, we really want to keep the number of additional parameters

(above that of the independence model) limited. Therefore, we do not work out this kind

of generalizations in the present paper.

3 Observations and estimators. The basic data are for each individual the pairs

(Xi, Yi) with Xi the claim amount and Yi the group code, 0 for the independent (ordinary)

claim and 1, 2, ... for the various dependent claims (due to a common risk). From the
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observed basic data (xi, yi) we can deduce

n : the number of independent claims

c1, ..., cn : the claim amounts for the independent claims

h : the number of group codes for the dependent claims

g1, ..., gh : the group sizes

d11, ..., dghh : the claim amounts for the dependent claims.

It will typically not be enough to have these data for one year, we usually will need data from

several years t = 1, ..., u, say. The reason for that is the scarcity of special claims. To get

reasonable estimates of ε, µG and γG we need data from an extended period. The estimators

will be based on Nt, C1t, . . . , CNtt, Ht, G1t, . . . , GHtt, D11t, . . . , DGHtHtt, for t = 1, ..., u.

For the observed data nt, c1t, ..., cntt, ht, g1t, . . . , ghtt, d11t, . . . , dght
htt, with t = 1, ..., u, the

likelihood equals

u∏
t=1

[
P (N = nt)

{
nt∏
i=1

fC(cit)

}
P (H = ht)

{
ht∏

k=1

P (G = gkt)

}{
ht∏

k=1

gkt∏
j=1

fC(djkt)

}]
.

Using

P (N = nt) =
exp {−λ(1− ε)} [λ(1− ε)]nt

nt!
,

P (H = ht) =
exp{−ελµ−1

G }(ελµ−1
G )ht

ht!
,

the likelihood can be written as

exp(−θ)θntot+htotphtot(1− p)ntot ×
{

u∏
t=1

ht∏

k=1

P (G = gkt)

}

×
u∏

t=1

[{
nt∏
i=1

fC(cit)

}{
ht∏

k=1

gkt∏
j=1

fC(djkt)

}]
×

u∏
t=1

1

nt!ht!unt+ht

with

θ = θ(λ, ε, µG) = uλ(1− ε + εµ−1
G ),

p = p(ε, µG) =
εµ−1

G

1− ε + εµ−1
G

,

ntot =
u∑

t=1

nt and htot =
u∑

t=1

ht.
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For short we will often write n and h instead of ntot and htot. Maximizing the likelihood

w.r.t. λ for given ε, µG gives θ̂ = n + h and hence

λ̂ = λ̂(ε, µG) =
n + h

u(1− ε + εµ−1
G )

. (3.1)

Inserting it and noting that exp(−θ̂)θ̂n+h does not depend on (ε, µG), the likelihood is

maximized w.r.t. ε for given µG by taking p̂ = h/(n + h) and hence

ε̂ = ε̂(µG) =
h

h + nµ−1
G

. (3.2)

Inserting this and noting that p̂h(1 − p̂)n does not depend on µG, it is seen that we end

up with the likelihood of the G’s times the likelihood of the C’s and D’s. This means

that we can proceed with estimating the parameters of the distribution of G using only the

G-observations and, separately, estimating the parameters of the distribution of C using

the C- and D-observations.

Taking for L the gamma-distribution, it follows that G has a negative binomial dis-

tribution. Although in general the number of observations from this negative binomial

distribution,
∑u

t=1 Ht, will be not very large, the expectation of G is as a rule not small,

say between 5 and 20. Under these circumstances, Saha and Paul [7] show that moment

estimators are a good alternative to maximum likelihood estimators.

Both when L has a gamma distribution and when L has an inverse Gaussian distribu-

tion, G has a distribution with two parameters. Moment estimators do not depend on the

parametrization. It is convenient to take as parametrization for G its expectation µG and

its coefficient of variation γG (see also Remarks 2.2 and 3.1). The moment estimates of the

expectation and coefficient of variation are

µ̂G = g =
1

h

u∑
t=1

ht∑

k=1

gkt,

γ̂G =

√
g2 − g2

g
with g2 =

1

h

u∑
t=1

ht∑

k=1

g2
kt.

Inserting µ̂G in ε̂, see (3.2), and writing gtot =
∑u

t=1

∑ht

k=1 gkt, yields

ε̂ =
h

h + ng−1 =
hg

hg + n
=

gtot

gtot + ntot

, (3.3)
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which as the observed fraction special claims indeed is the ”natural” estimate of ε. Inserting

ε̂ = hg/(hg + n), µ̂G = g in λ̂, see (3.1), moreover gives

λ̂ =
hg + n

u
=

gtot + ntot

u
,

which as the observed total number of claims divided by the number of years also is the

”natural” estimate of λ. Writing

h =

∑u
t=1 ht

u
=

h

u
, n =

∑u
t=1 nt

u
=

n

u
,

we may also write

λ̂ = hg + n.

For the estimation of the two parameters of the distribution of C we have many ob-

servations at our disposal. Hence here we clearly can use moment estimators as well. As

parametrization we once more take the expectation µC and the coefficient of variation γC .

This leads to

µ̂C = c + d =

∑u
t=1

∑nt

i=1 cit +
∑u

t=1

∑ht

k=1

∑gkt

j=1 djkt

ntot + gtot

,

γ̂C =

√
c2 + d2 − c + d

2

c + d
with c2 + d2 =

∑u
t=1

∑nt

i=1 c2
it +

∑u
t=1

∑ht

k=1

∑gkt

j=1 d2
jkt

ntot + gtot

.

Summarizing: our estimators are

µ̂C = C + D, γ̂C =

√
C2 + D2 − C + D

2

C + D
,

µ̂G = G, γ̂G =

√
G2 −G

2

G
,

ε̂ =
Gtot

Gtot + Ntot

, λ̂ =
Gtot + Ntot

u
.

Remark 3.1. Obviously, we can replace the parameters µG, γG and its estimators µ̂G, γ̂G

by the parameters µL, γL and the corresponding estimators µ̂L, γ̂L. Because µG = µL and

σ2
G = µL + σ2

L, implying that γL = µ−1
G

√
σ2

G − µG, we get

µ̂L = G,

γ̂L =

√
G2 −G

2 −G

G
. (3.4)
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As long as γL is not equal to 0 or close to 0, there is no problem with γ̂L. However, when

γL = 0 (or close to 0) it may easily happen that G2 − G
2 − G < 0 and hence a problem

arises with application of (3.4). Note that the case γL = 0 corresponds to a fixed parameter

of the Poisson distribution of G, a situation which we also want to take into account. In

view of the problems with (3.4), indeed it is more convenient to use the parametrization

µG, γG (see also Remark 2.2).

4 Behavior of E(S − a)+. The influence of the estimators on E(S − a)+ depends on

the behavior of E(S − a)+ as a function of the parameters µC , γC , µG, γG, ε, λ as well as

on the accuracy of the estimators. For instance, if E(S − a)+ is a flat function of the

parameters µC , γC , µG, γG, ε, λ and the estimators are accurate, the small changes due to

estimation will have not much effect. So, these two points have to be considered: how is

the fluctuation of E(S − a)+ and how accurate are the estimators.

Obviously, the retention a is not just a given number, but will depend on µS = ES and

σS =
√

var(S): the larger µS and σS, the larger retention a will be chosen. Defining k by

a = µS + kσS, or

k =
a− µS

σS

,

we will assume that k is chosen in advance, determining the retention a in ”standard units”.

That means that in our approach k does not depend on the parameters, while a does depend

on the parameters µC , γC , µG, γG, ε, λ through µS and σS.

In order to get insight into the fluctuation of

E(S − a)+ = σSE

(
S − µS

σS

− k

)+

we have to simplify σSE(σ−1
S (S − µS) − k)+ somewhat, because otherwise no conclusions

can be drawn. We apply two simplifications. In the first place, σSE(σ−1
S (S − µS) − k)+

is replaced by an approximation, which is simpler, but still sufficiently accurate in the

region where we are interested in, see (2.2). This approximation, SLPapp, say, concerns

the Gamma− Inverse Gaussian (G− IG) approximation. For a short description of this

approximation see the Appendix. That this approximation is indeed accurate in the region

considered is shown in the extensive numerical study carried out in Lukocius [4].

Since even then the resulting function is rather complicated, we apply in addition a one

step Taylor expansion on the approximation around the true value (µC0, γC0, µG0, γG0, ε0, λ0)
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Table 1: Accuracy of approximation SLPapp1.

(µC , γC , µG, γG, ε, λ, k) γL SLPapp SLPapp1 rel. error abs. error

(100000, 0.5, 10, 0.6, 0.05, 400, 0) 0.51 1089184 1131613 0.04 42429

(110000, 0.3, 12, 1, 0.04, 450, 1) 0.96 339776 332509 0.02 7267

(90000, 0.9, 18, 0.7, 0.05, 450, 2) 0.66 64051 67969 0.06 3918

(150000, 0.2, 10, 1.1, 0.02, 400, 3) 1.05 13180 15544 0.18 2364

(70000, 1, 20, 1, 0.03, 400, 0) 0.97 957230 1009965 0.06 52735

(120000, 0.1, 10, 0.6, 0.03, 450, 1) 0.51 275809 272302 0.01 3508

(200000, 0.8, 20, 0.5, 0.04, 400, 2) 0.45 114474 115798 0.01 1324

(150000, 0.5, 10, 1.1, 0.05, 400, 3) 1.05 18330 18904 0.03 575

of the parameters. We call this function SLPapp1, which is given by

SLPapp1 (µC , γC , µG, γG, ε, λ) = SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) (4.1)

+ (µC − µC0)
∂

∂µC

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+ (λ− λ0)
∂

∂λ
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) .

Table 1 gives an impression of the accuracy of SLPapp1. Here C and L each have a (dif-

ferent) gamma-distribution and for the true value of the parameters we have the following

representative choice: (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03, 400), imply-

ing γL0 = 0.76. We have SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) = 1164042, 292282, 56003,

9086 for k = 0, 1, 2, 3, respectively as our starting values. For convenience also the value of

γL =
√

γ2
G − µ−1

L is given.

This table indicates that the approximation by SLPapp1 is sufficiently accurate to

proceed with. Note that

SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0) = SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

and hence Table 1 gives also interesting information on the error in

SLPapp(µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂)− SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

due to replacing SLPapp by SLPapp1. Hence, further on we concentrate on SLPapp1.
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Table 2: Coefficients of SLPapp1 at (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03,

400) for k = 0, 1, 2, 3.

k ∂
∂µC

SLPapp ∂
∂γC

SLPapp ∂
∂µG

SLPapp ∂
∂γG

SLPapp ∂
∂ε

SLPapp ∂
∂λ

SLPapp

0 11.6404 3.8817µC0 0.1047µC0 1.3173µC0 61.9452µC0 0.0150µC0

1 2.9228 0.7076µC0 0.0632µC0 1.0253µC0 21.6362µC0 0.0032µC0

2 0.5600 −0.0210µC0 0.0343µC0 0.6532µC0 6.4573µC0 0.0003µC0

3 0.0909 −0.0459µC0 0.0116µC0 0.2336µC0 1.5790µC0 −0.0001µC0

The fluctuation of SLPapp1 is determined by the coefficients

∂

∂µC

SLPapp(µC0, γC0, µG0, γG0, ε0, λ0), . . . ,
∂

∂λ
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) .

To get some impression about the order of magnitude of these coefficients we have calculated

them at (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03, 400) (again for C and L each

having a (different) gamma-distribution and for k = 0, 1, 2, 3). The results are given in

Table 2.

In view of the very small coefficients and the fact that λ is large it seems better to write

the term

(λ− λ0)
∂

∂λ
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

as
λ− λ0

λ0

λ0
∂

∂λ
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) .

Indeed, in the theory which will be presented next we perform asymptotics for λ → ∞
and the appropriate quantity to consider then is (λ− λ0) /λ0, see Theorems 5.1 and 5.2.

A similar remark applies to ε (giving rather large coefficients) and hence we will consider

(ε− ε0)/ε0.

5 Behavior of the estimators. We study the behavior of the estimators

µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂.

These are functions of the vector

(
C + D, C2 + D2, G,G2, H, N

)
.
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The following theorem gives the limiting distribution of this vector. The skewness of

a random variable X is denoted by κ3X = σ−3E(X − µ)3 and its kurtosis by κ4X =

σ−4E(X − µ)4 − 3.

Remark 5.1. Theorems 5.1, 5.2, 5.3 and 6.1 continue to hold for other distributions of C

and G as well, provided that their fourth moments are finite.

Remark 5.2. In the following theorems we assume that λ → ∞. That seems to be the

natural way, because λ is the total expected number of claims, that is the expected number

of observations. The other parameters are assumed to be fixed. At first sight it might

seem curious that µC is called fixed, while in applications it is very large, for example

100000. However, this parameter is essentially a dummy parameter (although it should

be estimated!), see also Section 6. We investigate the effect of the estimation in a relative

sense, so to say in µC-units and therefore it can be considered as fixed.

Theorem 5.1. Assume that λ →∞ and that u, µC , γC , µG, γG, ε are fixed. Let

X1λ =

{
C + D

µC

− 1

} √
uλ

γC

,

X2λ =

{
C2 + D2

µ2
C

− (
1 + γ2

C

)
} √

uλ

γC

,

X3λ =

{
G

µG

− 1

}√
εuλ

µG

,

X4λ =

{
G2

µG

− µG

(
1 + γ2

G

)
} √

εuλ

µG

X5λ =

{
HµG

ελ
− 1

}√
εuλ

µG

,

X6λ =

{
N

λ (1− ε)
− 1

}√
uλ (1− ε).

Then, as λ →∞,

(X1λ, X2λ, X3λ, X4λ, X5λ, X6λ) → (U1, U2, U3, U4, U5, U6)
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with

(U1, U2) ∼ N

(
0, 0,

1 2 + γCκ3C

2 + γCκ3C γ2
C (κ4C + 2) + 4γCκ3C + 4

)
,

(U3, U4) ∼ N

(
0, 0,

γ2
G µGγ2

G (2 + γGκ3G)

µGγ2
G (2 + γGκ3G) µ2

Gγ2
G{γ2

G (κ4G + 2) + 4γGκ3G + 4}

)
,

U5 ∼ N(0, 1), U6 ∼ N(0, 1)

and (U1, U2) , (U3, U4) , U5, U6 independent.

Proof. The proof follows from standard asymptotic normality of random sums, see e.g.

Corollary 1 in Teicher [8], and direct calculation of the involved moments. For instance,

cov

(
C

µCγC

,
C2

µ2
CγC

)
=

EC3 − µCEC2

µ3
Cγ2

C

=
κ3Cγ3

Cµ3
C + 3µ3

C(γ2
C + 1)− 2µ3

C − µ3
C(γ2

C + 1)

µ3
Cγ2

C

= κ3CγC + 2.

The role of ”n” is played by λ. The ”inflation” of the covariance terms due to different

limiting values of the (random) numbers of terms in the sums does not appear here, since

the nonzero covariances have the same number of terms. For example, both C + D and

C2 + D2 have as number of terms Ntot + Gtot.

Obviously, N , having a P (λ(1− ε))-distribution can be considered as a sum of λ inde-

pendent random variables, each having a P (1− ε)-distribution, and similarly for H.

Remark 5.3. Theorem 5.1 can be applied to G : P (L) with parametrization µL, γL

(provided that the fourth moment of L is finite). We rewrite X3λ and X4λ as

X3λ =

{
G

µL

− 1

}√
εuλ

µL

,

X4λ =

{
G2

µL

− µL

(
1 + γ2

L

)− 1

} √
εuλ

µL

and use formulas like

γ2
G = γ2

L + µ−1
L .

We get asymptotic normality with

(U3, U4) ∼ N




0, 0,

γ2
L + µ−1

L

µLγ2
L (2 + γLκ3L)

+2 + 3γ2
L + µ−1

L

µLγ2
L (2 + γLκ3L)

+2 + 3γ2
L + µ−1

L

µ2
Lγ2

L{γ2
L (κ4L + 2) + 4γLκ3L + 4}

+2µL(3γ3
Lκ3L + 8γ2

L + 2) + 6 + 7γ2
L + µ−1

L




.
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Obviously, in X5λ we can replace µG by µL.

We are interested in SLPapp1, which is a linear combination of µ̂C , ..., λ̂. The next

theorem gives the limiting distribution of such functions.

Theorem 5.2. Assume that λ →∞ and that u, µC , γC , µG, γG, ε are fixed. Let c1, ..., c6 be

deterministic functions of µC , γC , µG, γG, ε and λ. Define

Z1 = c1
µ̂C − µC

µC

+ c2 (γ̂C − γC) ,

Z2 = c3 (µ̂G − µG)
√

ε + c4 (γ̂G − γG)
√

ε + c5

(
ε̂− ε

ε

)√
ε + c6

λ̂− λ

λ

Then, as λ →∞, (
Z1

τ1

,
Z2

τ2

)√
uλ → (V1, V2) (5.1)

with V1, V2 independent and V1, V2 ∼ N (0, 1) with

τ 2
1 = γ2

C{c2
1 + c1c2(κ3C − 2γC) + c2

2(γ
2
C +

1

4
κ4C +

1

2
− γCκ3C)}

and

τ 2
2 = c2

3µ
3
Gγ2

G

+ c2
4µGγ2

G

(
γ2

G − γGκ3G +
1

4
κ4G +

1

2

)

+ c2
5 (1− ε) {µG (1− ε)

(
1 + γ2

G

)
+ ε}

+ c2
6

{
µGε

(
1 + γ2

G

)
+ 1− ε

}

+ c3c4µ
2
Gγ2

G(κ3G − 2γG)

+ 2c3c5 (1− ε) µ2
Gγ2

G

+ 2c3c6

√
εµ2

Gγ2
G

+ c4c5µGγ2
G(1− ε)(κ3G − 2γG)

+ c4c6µGγ2
G

√
ε(κ3G − 2γG)

+ 2c5c6

√
ε (1− ε) {µG

(
1 + γ2

G

)− 1}.

Proof. We have
µ̂C − µC

µC

√
uλ = γCX1λ (5.2)
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and

(γ̂C − γC)
√

uλ =




√
1 + γ2

C + γCX2λ (uλ)−1/2 −
{

1 + γCX1λ (uλ)−1/2
}2

1 + γCX1λ (uλ)−1/2
− γC



√

uλ.

It follows from Theorem 5.1 that
√

1 + γ2
C + γCX2λ (uλ)−1/2 −

{
1 + γCX1λ (uλ)−1/2

}2

=

√
γ2

C + γCX2λ (uλ)−1/2 − 2γCX1λ (uλ)−1/2 + OP (λ−1)

=γC + 1
2
X2λ (uλ)−1/2 −X1λ (uλ)−1/2 + OP

(
λ−1

)

as λ →∞. Hence, we get

√
1 + γ2

C + γCX2λ (uλ)−1/2 −
{

1 + γCX1λ (uλ)−1/2
}2

1 + γCX1λ (uλ)−1/2
− γC

=
γC + 1

2
X2λ (uλ)−1/2 −X1λ (uλ)−1/2 + OP (λ−1)− γC − γ2

CX1λ (uλ)−1/2

1 + γCX1λ (uλ)−1/2

=1
2
X2λ (uλ)−1/2 −X1λ (uλ)−1/2 − γ2

CX1λ (uλ)−1/2 + OP

(
λ−1

)

and thus

(γ̂C − γC)
√

uλ = 1
2
X2λ −

(
1 + γ2

C

)
X1λ + OP

(
λ−1/2

)
(5.3)

as λ →∞.

Next we show that |c1/τ1| and |c2/τ1| are bounded above as functions of λ. Let U1 and

U2 as given in Theorem 5.1 and X = γCU1, Y = 1
2
U2 − (1 + γ2

C) U1. Then we have τ 2
1 =

var (c1X + c2Y ) and hence τ 2
1 ≥ {1− ρ2 (X,Y )}max {var (c1X) , var (c2Y )}. Because X

and Y do not depend on λ and therefore also var (X) , var(Y ) and ρ (X, Y ) do not depend

on λ, the boundedness of |c1/τ1| and |c2/τ1| immediately follows.

Combination of (5.2) and (5.3) and application of Theorem 5.1 gives

{
c1

µ̂C − µC

µC

+ c2 (γ̂C − γC)

}
τ−1
1

√
uλ → V1.

We have

(µ̂G − µG)
√

εuλ = µ
3/2
G X3λ (5.4)
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and

G2 −G
2

= µ2
G

(
1 + γ2

G

)
+ µ

3/2
G (εuλ)−1/2 X4λ −

(
µG + µ

3/2
G (εuλ)−1/2 X3λ

)2

.

It follows from Theorem 5.1 that
√

G2 −G
2

=

√
µ2

Gγ2
G + µ

3/2
G (εuλ)−1/2 X4λ − 2µ

5/2
G (εuλ)−1/2 X3λ + OP (λ−1)

=µGγG + 1
2
µ

1/2
G γ−1

G (εuλ)−1/2 X4λ − µ
3/2
G γ−1

G (εuλ)−1/2 X3λ + OP

(
λ−1

)

and thus

(γ̂G − γG)
√

εuλ =





√
G2 −G

2

µG + µ
3/2
G (εuλ)−1/2 X3λ

− γG




√

εuλ

= 1
2
µ
−1/2
G γ−1

G {X4λ − 2µG

(
1 + γ2

G

)
X3λ}+ OP

(
λ−1/2

)

as λ →∞. It is seen, cf. e.g. (3.3) that

ε̂ =
HG

HG + N
.

By Theorem 5.1 we get

HG = ελ
{

1 + µ
1/2
G (εuλ)−1/2 X5λ

}{
1 + µ

1/2
G (εuλ)−1/2 X3λ

}
(5.5)

= ελ
{

1 + µ
1/2
G (εuλ)−1/2 (X5λ + X3λ) + OP

(
λ−1

)}
.

Together with

N = λ (1− ε)
[
1 + {(1− ε) uλ}−1/2 X6λ

]
(5.6)

this leads to

ε̂ =
ε
{

1 + µ
1/2
G (εuλ)−1/2 (X5λ + X3λ) + OP (λ−1)

}

ε
{

1 + µ
1/2
G (εuλ)−1/2 (X5λ + X3λ) + OP (λ−1)

}
+ (1− ε)

[
1 + {(1− ε) uλ}−1/2 X6λ

]

= ε + (1− ε)ε1/2µ
1/2
G (uλ)−1/2 (X5λ + X3λ)− ε (1− ε)1/2 (uλ)−1/2X6λ + OP

(
λ−1

)

and thus
(

ε̂− ε

ε

)√
εuλ = (1− ε) µ

1/2
G (X5λ + X3λ)− ε1/2 (1− ε)1/2 X6λ + OP

(
λ−1/2

)
(5.7)
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as λ →∞. Finally, we have

λ̂− λ

λ

√
uλ =

(
HG + N

λ
− 1

)√
uλ.

In view of (5.5) and (5.6) we get

HG + N

λ

=ε
{

1 + µ
1/2
G (εuλ)−1/2 (X5λ + X3λ) + OP

(
λ−1

)}
+ (1− ε)

[
1 + {(1− ε) uλ}−1/2 X6λ

]

=1 + (εµG)1/2 (uλ)−1/2 (X5λ + X3λ) + (1− ε)1/2 (uλ)−1/2X6λ + OP

(
λ−1

)

and hence

λ̂− λ

λ

√
uλ = (εµG)1/2 (X5λ + X3λ) + (1− ε)1/2 X6λ + OP

(
λ−1/2

)
(5.8)

as λ →∞.

By a similar argument as before it follows that |c3/τ2| , ..., |c6/τ2| are bounded above

as functions of λ. Note that τ 2
2 is of the form var (c3X1 + ... + c6X4) and thus τ 2

2 ≥
(1− ρ∗2i ) var (c2+iXi) , i = 1, ..., 4, where ρ∗2i is the multiple correlation coefficient of Xi

with the other Xj’s, which does not depend on λ.

Combination of (5.4)–(5.8) and application of Theorem 5.1 gives
{

c3 (µ̂G − µG)
√

ε + c4 (γ̂G − γG)
√

ε + c5

(
ε̂− ε

ε

)√
ε + c6

λ̂− λ

λ

}
τ−1
2

√
uλ → V2.

The asymptotic independence of c1 (µ̂C − µC) /µC + c2 (γ̂C − γC) and c3 (µ̂G − µG)
√

ε

+c4 (γ̂G − γG)
√

ε + c5 (ε̂− ε) /
√

ε + c6

(
λ̂− λ

)
/λ completes the proof.

Next we apply Theorem 5.2 in order to get an idea of the impact of the estimators on

SLPapp1. The error due to estimation, divided by µC0, equals, cf. (4.1),

µ−1
C0{SLPapp1

(
µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂

)
− SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)}

=

(
µ̂C − µC0

µC0

)
∂

∂µC

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

+ (γ̂C − γC)µ−1
C0

∂

∂γC

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

+ · · ·+
(

λ̂− λ0

λ0

)
λ0µ

−1
C0

∂

∂λ
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) .
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The asymptotic distribution of µ−1
C0{SLPapp1

(
µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂

)
−SLPapp(µC0, γC0, µG0,

γG0, ε0, λ0)}
√

uλ0 is obtained by application of Theorem 5.2 with

c1 =
∂

∂µC

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c2 = µ−1
C0

∂

∂γC

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c3 = ε
−1/2
0 µ−1

C0

∂

∂µG

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c4 = ε
−1/2
0 µ−1

C0

∂

∂γG

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c5 = ε
1/2
0 µ−1

C0

∂

∂ε
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c6 = λ0µ
−1
C0

∂

∂λ
SLPapp(µC0, γC0, µG0, γG0, ε0, λ0).

The result is a normal distribution with expectation 0 and variance τ 2
1 + τ 2

2 . Hence, this

variance gives an idea of the error due to estimation.

As an example we calculate τ 2
1 and τ 2

2 for (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8,

0.03, 400) and k = (a− µS)/σS = 1 (again with C and L each having a (different) gamma-

distribution). Note that SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) = 292282 in that case (see

Section 4). The values of c1, . . . , c6 are easily obtained from Table 2. We get (for the

gamma distribution it holds that κ3 = 2γ and hence the coefficient of c1c2 equals 0)

c2
1γ

2
C0 = 4.19

c1c2γ
2
C0(κ3C0 − 2γC0) = 0

c2
2γ

2
C0(γ

2
C0 +

1

4
κ4C0 +

1

2
− γC0κ3C0) = 0.18

and therefore

τ 2
1 = 4.37.

Using that L has a gamma-distribution, direct calculation (see also (A7)) gives κ3G =

2γG − µ−1
G γ−1

G and κ4G = 6γ2
G − 6µ−1

G + µ−2
G γ−2

G . We obtain
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c2
3µ

3
G0γ

2
G0 = 287.43 (5.9)

1

2
c2
4

(
µG0γ

4
G0 − γ2

G0 +
1

2
µ−1

G0 + µG0γ
2
G0

)
= 265.21

c2
5 (1− ε0) {µG0 (1− ε0)

(
1 + γ2

G0

)
+ ε0} = 325.47

c2
6

{
µG0ε0

(
1 + γ2

G0

)
+ 1− ε0

}
= 2.84

− c3c4µG0γG0 = −25.91

2c3c5 (1− ε0) µ2
G0γ

2
G0 = 381.90

2c3c6

√
ε0µ

2
G0γ

2
G0 = 23.46

− c4c5γG0(1− ε0) = −17.21

− c4c6γG0

√
ε0 = −1.06

2c5c6

√
ε0 (1− ε0) {µG0

(
1 + γ2

G0

)− 1} = 38.31

and hence

τ 2
2 = 1280.43.

This example is really illuminating. It is clearly seen that the contribution of estimating

µC and γC is not very high: τ 2
1 is much smaller than τ 2

2 . The reason is that we have a lot

of observations for estimating µC and γC . Typical values for u and λ are values like 7 and

400, respectively. That means about 2800 observations to estimate the parameters of the

common distribution of the Ci and Djk. Due to this large number of observations, these

estimators are very accurate. Similarly, estimating λ gives also a not very high contribution

to the variance τ 2
1 + τ 2

2 . That is seen from the various terms contributing to τ 2
2 . The terms

in which estimating λ is involved, that is the terms where c6 appears, are much smaller

than the other terms.

This leads to the following

Conclusion. The estimation error is dominated by the estimation of the parameters

related to the common risk, that is by estimating µG, γG and ε. Therefore, the parameters

of the distribution of the Ci and Djk, µC and γC , and also λ can in fact considered to be

known.

Remark 5.4. Theorem 5.2 can be applied to G : P (L) with parametrization µL, γL

(provided that the fourth moment of L is finite), replacing c3 (µ̂G − µG)
√

ε+c4 (γ̂G − γG)
√

ε



Estimation effects on stop-loss premiums under dependence 43

by

c3 (µ̂L − µL)
√

ε + c4 (γ̂L − γL)
√

ε and τ 2
2 by

τ 2
2 = c2

3

(
µ3

Lγ2
L + µ2

L

)

+ c2
4

{
µLγ2

L

(
γ2

L − γLκ3L +
1

4
κ4L +

1

2

)
− γ2

L + γLκ3L + 1 +
1

2
µ−1

L

(
1 + γ−2

L

)}

+ c2
5 (1− ε) {µL (1− ε)

(
1 + γ2

L

)
+ 1}

+ c2
6

{
µLε

(
1 + γ2

L

)
+ 1

}

+ c3c4µ
2
Lγ2

L(κ3L − 2γL)

+ 2c3c5 (1− ε)
(
µ2

Lγ2
L + µL

)

+ 2c3c6

√
ε
(
µ2

Lγ2
L + µL

)

+ c4c5µLγ2
L(1− ε)(κ3L − 2γL)

+ c4c6µLγ2
L

√
ε(κ3L − 2γL)

+ 2c5c6µL

√
ε (1− ε)

(
1 + γ2

L

)
.

So, in the sequel µC , γC and λ are assumed to be known, while ε, µG = µL and γG or

γL are estimated by

ε̂ =
Gtot

Gtot + Ntot

,

µ̂G = µ̂L = G,

γ̂G =

√
G2 −G

2

G
, γ̂L =

√
G2 −G

2 −G

G

with

Gtot =
u∑

t=1

ht∑

k=1

Gkt, Htot =
u∑

t=1

Ht, Ntot =
u∑

t=1

Nt,

G =
1

Htot

u∑
t=1

ht∑

k=1

Gkt, G2 =
1

Htot

u∑
t=1

ht∑

k=1

G2
kt.

Writing SLP (µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂) for the estimator of the stop-loss premium E(S−a)+,

we now have the following result.
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Theorem 5.3. Let (µC0, γC0, µG0, γG0, ε0, λ0) be the true value of the parameters. Then

SLP (µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂) ≈ SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)

and

µ−1
C0 {SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0)} τ−1

√
uλ0ε0 → V

as λ0 →∞, with V ∼ N (0, 1), in which

τ 2 = c2
3µ

3
Gγ2

G (5.10)

+ c2
4µGγ2

G

(
γ2

G − γGκ3G +
1

4
κ4G +

1

2

)

+ c2
5 (1− ε) {µG (1− ε)

(
1 + γ2

G

)
+ ε}

+ c3c4µ
2
Gγ2

G(κ3G − 2γG)

+ 2c3c5 (1− ε) µ2
Gγ2

G

+ c4c5µGγ2
G(1− ε)(κ3G − 2γG),

where

c3 = µ−1
C0

∂

∂µG

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) , (5.11)

c4 = µ−1
C0

∂

∂γG

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) ,

c5 = ε0µ
−1
C0

∂

∂ε
SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) .

Proof. The limiting result follows directly from Theorem 5.2, because

µ−1
C0{SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0)}

= c3 (µ̂G − µG0) + c4 (γ̂G − γG0) + c5
ε̂− ε0

ε0

with c3, c4, c5 given by (5.11). (Note that here we have used in the formulation of the

theorem
√

uλ0ε0 instead of
√

uλ0, because the expected number of special claims equals

uλ0ε0.)

Remark 5.5. Theorem 5.3 can be applied to G : P (L) with parametrization µL, γL (pro-

vided that the fourth moment of L is finite), replacing SLP (µ̂C , γ̂C , µ̂G, γ̂G, ε̂, λ̂), SLPapp1(
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µC0, γC0, µ̂G, γ̂G, ε̂, λ0) and SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0) by SLP (µ̂C , γ̂C , µ̂L, γ̂L, ε̂, λ̂),

SLPapp1 (µC0, γC0, µ̂L, γ̂L, ε̂, λ0) and SLPapp1 (µC0, γC0, µL0, γL0, ε0, λ0), respectively, and

τ 2 by

τ 2 = c2
3

(
µ3

L0γ
2
L0 + µ2

L0

)
(5.12)

+ c2
4

{
µL0γ

2
L0

(
γ2

L0 − γL0κ3L0 +
1

4
κ4L0 +

1

2

)
− γ2

L0 + γL0κ3L0 + 1 +
1

2
µ−1

L0

(
1 + γ−2

L0

)}

+ c2
5 (1− ε0) {µL0 (1− ε0)

(
1 + γ2

L0

)
+ 1}

+ c3c4µ
2
L0γ

2
L0(κ3L0 − 2γL0)

+ 2c3c5 (1− ε0)
(
µ2

L0γ
2
L0 + µL0

)

+ c4c5µL0γ
2
L0(1− ε0)(κ3L0 − 2γL0),

where

c3 = µ−1
C0

∂

∂µL

SLPapp (µC0, γC0, µL0, γL0, ε0, λ0) , (5.13)

c4 = µ−1
C0

∂

∂γL

SLPapp (µC0, γC0, µL0, γL0, ε0, λ0) ,

c5 = ε0µ
−1
C0

∂

∂ε
SLPapp (µC0, γC0, µL0, γL0, ε0, λ0) .

6 Effect of estimation, protection. Having established readily applicable formulas

for the estimation effects, we investigate the impact of the estimation on the stop-loss

premium E(S − a)+. We start with an example. Let the true values of the parameters be

equal to (µC0, γC0, µG0, γG0, ε0, λ0) = (100000, 0.7, 15, 0.8, 0.03, 400) and k = (a−µS)/σS =

1. Let C and L each have a (different) gamma-distribution. As we have seen, see Section

4, SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) = 292282 in that case. We may for example ask:

what is the probability that SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) is smaller than 200000, that

is an error of more than 92282? We apply Theorem 5.3. Direct calculation gives τ 2 = 36.51

and hence, with Φ the standard normal distribution function and noting that 10−5(200000−
292282) (36.51)−1/2

√
12 = −0.53, we obtain

P (SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) < 200000)

=P (10−5{SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− 292282} (36.51)−1/2
√

12u < −0.53
√

u)

≈Φ(−0.53
√

u).
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Taking only one year, that is u = 1, we see that with a probability as large as 30% we get

an estimated value smaller than 200000, while in fact it should have been 292282. This

makes clear that indeed one year is not enough. The reason for this is of course that in

one year the expected number of groups is (in this case) only ελ/µG = 12/15 = 0.8. This

makes the estimation of µG, γG and ε very inaccurate. When taking u = 7, the probability

reduces from 30% to 8%.

We see from the example that the estimation effect may be considerable and we may

want to protect ourselves against the estimation error, in the sense of confidence bounds

for SLPapp. The following theorem deals with such a protection.

Theorem 6.1. Let (µC0, γC0, µG0, γG0, ε0, λ0) be the true value of the parameters. Then

lim
λ0→∞

P (SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) < UB (α)) = 1− α,

lim
λ0→∞

P (SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) > LB (α)) = 1− α,

lim
λ0→∞

P (LB(α/2) < SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) < UB (α/2)) = 1− α

with

UB (α) = SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) + Φ−1(1− α)(ε̂uλ0)
−1/2τ̂µC0,

LB (α) = SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− Φ−1(1− α)(ε̂uλ0)
−1/2τ̂µC0,

where τ̂ =
√

τ̂ 2 and τ̂ 2 is given in (5.10) and (5.11) with µG0, γG0, ε0 replaced by their

estimators µ̂G, γ̂G, ε̂ (also in c3, c4, c5, κ3G0 and κ4G0).

Proof. It is easily seen, cf. e.g. Theorem 5.2, that µ̂G, γ̂G, ε̂ are consistent estimators of

µG, γG, ε. Writing ĉi for ci with µG0, γG0, ε0 replaced by their estimators µ̂G, γ̂G, ε̂, it can

be shown (we omit the details, but see Lukocius [5], Chapter 7 for more explanation) that

ĉi/ci →P 1 as λ0 →∞ and moreover, that the ci are of the same order of magnitude (that

is of exact order λ
1/2
0 ) for i = 3, 4, 5 and hence τ̂ /τ →P 1 as λ0 → ∞. Application of

Theorem 5.3 therefore yields

(τ̂µC0)
−1 {SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)− SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0)}

√
ε̂uλ0

→ U
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with U ∼ N(0, 1). This implies, writing temporarily Ŝ = SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0)

and noting that SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) = SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0),

P (SLPapp (µC0, γC0, µG0, γG0, ε0, λ0) < UB (α))

=P (SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0) < Ŝ + Φ−1(1− α)(ε̂uλ0)
−1/2τ̂µC0)

=P ((τ̂µC0)
−1

{
Ŝ − SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0)

} √
ε̂uλ0 > −Φ−1(1− α))

→P (U > −Φ−1(1− α)) = 1− α,

thus giving the first result. The other statements are obtained in a similar way.

Remark 6.1. Theorem 6.1 can be applied to G : P (L) with parametrization µL, γL (pro-

vided that the fourth moment of L is finite), replacing SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

and SLPapp1 (µC0, γC0, µ̂G, γ̂G, ε̂, λ0) by SLPapp (µC0, γC0, µL0, γL0, ε0, λ0) and SLPapp1

(µC0, γC0, µ̂L, γ̂L, ε̂, λ0), respectively, and τ̂ 2 by the estimated version of (5.12) and (5.13).

Remark 6.2. One may ask why the estimation error is quite substantial. Is it due to

the model construction, or the use of the maximum likelihood estimators, or the structure

of the stop-loss premium, or the use of the G − IG approximation, or is it due to the

further Taylor expansion error? As mentioned before, the estimation error is dominated

by the part of the parameters related to the special claims, because by their nature we do

not have many observations of them. So, that is the main reason. It is well-known that

the more observations, in general the more accurate the estimation. This is so to say an

explanation on the most general level. Going somewhat deeper into it, we may distinguish

two aspects: the function of the parameters, that have to be estimated (in our case the

stop-loss premium) and the accuracy of the estimators of the parameters. If the function

is very flat, errors due to estimation may be not very large. With respect to this aspect,

obviously the structure of the stop-loss premium comes in. The fluctuation of the stop-loss

premium as function of the parameters is expressed by its first order derivatives. These are

studied in Section 4. Obviously, the stop-loss premium, being a function of S, is determined

by the model construction and hence the model construction plays a role. For instance, in

the far more simple model assuming only independent claims, the estimation error will be

much less, because the estimation error is dominated by the part of the parameters related

to the special claims and they are not present in the independence model. The use of

the G− IG approximation and the further Taylor expansion are not important. That the
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Figure 1

G−IG approximation is accurate was already shown in Lukocius [4]; that also the one step

Taylor expansion is accurate is shown in Section 4. The accuracy of the estimators of the

parameters is established in Theorems 5.1 and 5.2. There it has been shown, that indeed

the part of the parameters related to the special claims are dominating. All estimators,

used in the paper are ”natural” estimators of the corresponding parameters and therefore

the use of the maximum likelihood estimators seems to be not that important. It is very

nice that the method of maximum likelihood leads to ”natural” estimators, but the fact

that indeed we get such ”natural” estimators is more important.

Remember that the contribution of estimating µC , γC and λ is very small compared to

that of estimating µG, γG and ε. Therefore, we assume in Theorem 6.1 again µC0, γC0, λ0

to be known. Obviously, in practice one should insert the estimators µ̂C , γ̂C and λ̂ in the

upper and lower bounds UB (α) and LB (α).

In Figures 1–3 some examples are presented of the extra amount due to the protection

against estimation and the effect of dependence in these situations. Figures 1a–3a show

the relative difference between the independent case and the dependence one. Let C and
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Figure 2

L each have a (different) gamma-distribution. We take γC0 = 0.4 or 1.2, µG0 = 5, 10 or

15, γG0 = 0.5 or 1, ε0 = 0.03 and λ0 = 400. Obviously the independence case is obtained

by taking ε = 0. The relative difference is defined by

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)− SLPapp (µC0, γC0, µG0, γG0, 0, λ0)

SLPapp (µC0, γC0, µG0, γG0, 0, λ0)

=
SLP

SLPI

− 1,

where SLP denotes the (approximated) stop-loss premium SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

under dependence and SLPI = SLPapp (µC0, γC0, µG0, γG0, 0, λ0), the (approximated) stop-

loss premium under independence. For a fair comparison we take both for the independence

model and the dependence one the same retentions

a = µS + kσSI

with k = 0, . . . , 3 and σSI = µC

√
λ (1 + γ2

C), the standard deviation of S for the indepen-

dence model (see also the Appendix).

Figures 1b–3b show the extra amount due to protection against estimation, also mea-
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Figure 3

sured in a relative way by taking

UB (α)− SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

with in UB (α) the estimators µ̂G, γ̂G, ε̂ and τ̂ replaced by µG, γG, ε0 and
√

τ 2, respectively.

We take α = 0.1 and u = 7. It is easily seen (see also at the end of this section) that both

measures do not depend on µC0.

Note that the order of the displayed cases is slightly different in the figures a and b:

for instance, for µG0 = 5 (Figures 1a, b) the relative difference between dependence and

independence is higher for γC0 = 0.4, γG0 = 0.5 than for γC0 = 1.2, γG0 = 1, while their

order w.r.t. the relative extra amount due to protection against estimation is reversed.

Figures 1–3 affirm that ignoring dependence may lead to very large errors (up to 4294%

in Figure 3). But also the additional step due to protection against estimation is large

(up to 138% in Figure 3). A numerical example may illustrate this. Consider again the

example with true values of the parameters being equal to (µC0, γC0, µG0, γG0, ε0, λ0) =

(100000, 0.7, 15, 0.8, 0.03, 400). Take k = 1 and hence a = µS + σSI = 4× 107 + 2561250 =

42561250. If we ignore the dependence structure we get SLPapp(100000, 0.7, 15, 0.8, 0, 400) =
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211277. If we take into account the dependence without protection against estimation we

get SLPapp(100000, 0.7, 15, 0.8, 0.03, 400) = 382006. If we add the protection (taking

µ̂G = µG0 = 15, γ̂G = γG0 = 0.8, ε̂ = ε0 = 0.03, τ̂ =
√

τ 2) we get UB(0.1) = 476596.

The upper and lower bounds UB (α) and LB (α) contain the term τ̂µC0. As this

quantity is the less transparent part of UB (α) and LB (α), we will discuss it now. It is

seen in the Appendix that

SLPapp (µC , γC , µG, γG, ε, λ) = µCSLPapp (1, γC , µG, γG, ε, λ) .

In view of (5.11) this implies

c3 =
∂

∂µG

SLPapp (1, γC0, µG0, γG0, ε0, λ0) ,

c4 =
∂

∂γG

SLPapp (1, γC0, µG0, γG0, ε0, λ0) ,

c5 = ε0
∂

∂ε
SLPapp (1, γC0, µG0, γG0, ε0, λ0) .

Therefore, see (4.1), using

SLPapp1 (µC0, γC0, µG0, γG0, ε0, λ0) = SLPapp (µC0, γC0, µG0, γG0, ε0, λ0)

= µC0SLPapp (1, γC0, µG0, γG0, ε0, λ0) ,

we get

UB (α) = µC0{SLPapp1 (1, γC0, µ̂G, γ̂G, ε̂, λ0) + Φ−1(1− α)(ε̂uλ0)
−1/2τ̂},

LB (α) = µC0{SLPapp1 (1, γC0, µ̂G, γ̂G, ε̂, λ0)− Φ−1(1− α)(ε̂uλ0)
−1/2τ̂}.

So, we see that indeed µC0 is a kind of dummy parameter.

In the special case with L having a gamma distribution,

κ3G = 2γG − µ−1
G γ−1

G , κ4G = 6γ2
G − 6µ−1

G + µ−2
G γ−2

G
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Figure 4: Behavior of τ 2(µC , γC , µG, γG, ε, λ, k) as ε → 0 with (µC , γC , µG, γG, λ) =

(100000, 0.7, 15, 0.8, 400) and k = (a− µS) /σS = 1.

and thus τ 2 reduces to

τ 2 = c2
3µ

3
Gγ2

G (6.1)

+
1

2
c2
4

(
µGγ4

G − γ2
G +

1

2
µ−1

G + µGγ2
G

)

+ c2
5 (1− ε) {µG (1− ε)

(
1 + γ2

G

)
+ ε}

− c3c4µGγG

+ 2c3c5 (1− ε) µ2
Gγ2

G

− c4c5γG(1− ε).

For illustrative purposes we show the behavior of τ 2 in (6.1) as a function of ε (with

(µC , γC , µG, γG, λ, k) = (100000, 0.7, 15, 0.8, 400, 1) keeping fixed). Note that c3, c4, c5 de-

pend on ε in a complicated way. It is clearly seen in Figure 4 that τ 2 tends to 0 if ε → 0.

Appendix. Approximations. Here we present three approximations: the gamma

approximation, the Inverse Gaussian (IG) approximation and the Gamma − Inverse

Gaussian (G− IG) approximation. For the parameter range and distributions under con-

sideration (see Section 2) the G−IG approximation works well and is best among the three
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approximations, see Lukocius [4] for more details. Therefore, the G− IG approximation is

recommended. Note that one has to be careful with extending this conclusion outside the

parameter range or for other distributions than considered here.

Gamma approximation

A shifted gamma distribution is fitted such that the first three cumulants coincide with

those of S. The density of the gamma distribution with parameters α and β (for short:

Gamma(α, β)) is given by

fG(x; α, β) =
xα−1βαe−βx

Γ(α)
.

We approximate S by T such that T − x0 is Gamma(α, β), where x0, α and β are selected

such that the first three cumulants of T and S coincide. This is achieved by taking

α =

(
2

κ3S

)2

, β =
2

σSκ3S

and x0 = µS − 2σS

κ3S

.

Noting that a = µS + kσS, it leads to the approximation

EG(S − a)+ = σSEG

(
S − µS

σS

− k

)+

= σS

{
2

κ3S

FG

(
k +

2

κ3S

;
4

κ2
3S

+ 1,
2

κ3S

)
−

(
k +

2

κ3S

)
FG

(
k +

2

κ3S

;
4

κ2
3S

,
2

κ3S

)}
,

where

FG(x; α, β) = 1− FG(x; α, β)

and where FG(x; α, β) is the distribution function of the gamma distribution with param-

eters α and β.

IG approximation

The density of the IG-distribution with parameters α and β (for short: IG(α, β)) is given

by

fIG(x; α, β) = α(2πβ)−1/2x−3/2 exp

{
−(α− βx)2

2βx

}
.

For the IG approximation (see Chaubey et al. [3]) we approximate S by T such that T −x0

is IG(α, β), where x0, α and β are selected such that the first three cumulants of T and S
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coincide. This is achieved by taking

α =

(
3

κ3S

)2

, β =
3

σSκ3S

and x0 = µS − 3σS

κ3S

.

Noting that a = µS + kσS, it leads to the approximation

EIG(S−a)+ = σSE

(
S − µS

σS

− k

)+

= σS

∫ ∞

k

x− k√
2π

(
1 + 1

3
xκ3S

)3
exp

[
− x2

2
(
1 + 1

3
xκ3S

)
]

dx.

Using

d

dx

{
Φ

(
x√

1 + tx

)
− exp

(
2

t2

)
Φ

(
x + 2

t√
1 + tx

)}
=

1√
2π (1 + tx)3

exp

[
− x2

2 (1 + tx)

]
,

d

dx

{
2

t
exp

(
2

t2

)
Φ

(
x + 2

t√
1 + tx

)}
=

x√
2π (1 + tx)3

exp

[
− x2

2 (1 + tx)

]
,

we obtain

EIG(S − a)+ = σS





(
k +

6

κ3S

)
exp

(
18

κ2
3S

)
Φ


 −k − 6

κ3S√
1 + 1

3
kκ3S


− kΦ


 −k√

1 + 1
3
kκ3S






 .

G− IG approximation

The G − IG approximation is a combination of the gamma approximation and the IG

approximation. Each of these approximations only uses the first three cumulants. A

mixing parameter w can be chosen such that the kurtosis of S is fitted as well. The mixing

parameter turns out to be

w = w(κ3S, κ4S) =
5
3
κ2

3S − κ4S

5
3
κ2

3S − 3
2
κ2

3S

= 10− 6κ4S

κ2
3S

.

Hence, the G− IG approximation gives

EG−IG(S − a)+ = w(κ3S, κ4S)EG(S − a)+ + [1− w(κ3S, κ4S)] EIG(S − a)+.

Remark A.1. In order that the weight w(κ3S, κ4S) in the G − IG approximation lies

between 0 and 1 we should assume 3
2
κ2

3S ≤ κ4S ≤ 5
3
κ2

3S. Unfortunately, often this condition
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is not satisfied. However, we may use nevertheless the G− IG approximation (with w not

in (0, 1)) and simply consider it as an approximation. On the interval in which we are

interested (s > a = µS + kσS with 0 ≤ k ≤ 3), often

w(κ3S, κ4S)fG

(
s− µS +

2σS

κ3S

;

(
2

κ3S

)2

,
2

σSκ3S

)

+ [1− w(κ3S, κ4S)] fIG

(
s− µS +

3σS

κ3S

;

(
3

κ3S

)2

,
3

σSκ3S

)

behaves like a density. That is, it is positive on this interval. (In principle, in that case we

could even extend it to a density, but note that we should also keep the first four moments

of the approximation and those of S equal to each other and that makes it a little bit nasty;

therefore we do not bother and consider it simply as an approximation.)

Next we present formulas for µS, σS, κ3S and κ4S.

Formulas for µS, σS, κ3S and κ4S

So far, the approximations are in terms of σS, κ3S and κ4S. It remains to link these quantities

to the basic parameters µC , γC , µG, γG, ε and λ. We start with expressions in case of general

C, G (with finite fourth moment), adding for the the sake of completeness also µS:

µS = λµC , (A1)

σS/(
√

λµC) =
√

1 + γ2
C − ε + ε(1 + γ2

G)µG,

κ∗3S/(λµ3
C) = 1 + 3γ2

C + κ3Cγ3
C − ε(1 + 3γ2

C) + 3εγ2
C(1 + γ2

G)µG + ε(1 + 3γ2
G + κ3Gγ3

G)µ2
G,

κ∗4S/(λµ4
C) = 1 + 6γ2

C + 4κ3Cγ3
C + (κ4C + 3)γ4

C

− ε(1 + 6γ2
C + 4κ3Cγ3

C + 3γ4
C)

+ ε(1 + γ2
G)(4κ3Cγ3

C + 3γ4
C)µG

+ 6εγ2
C(1 + 3γ2

G + κ3Gγ3
G)µ2

G

+ ε{1 + 6γ2
G + 4κ3Gγ3

G + (κ4G + 3)γ4
G}µ3

G,

κ3S = κ∗3S/σ3
S,

κ4S = κ∗4S/σ4
S.

So, SLPapp (µC , γC , µG, γG, ε, λ) is obtained by inserting σS, κ3S and κ4S from (A1) into

EG−IG(S − a)+. It is easily seen that κ3S and κ4S do not depend on µC . Moreover,
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EG−IG(S − a)+ is of the form σSh(κ3S, κ4S) and σS is of the form µCh∗(γC , µG, γG, ε, λ).

Hence, we get

SLPapp (µC , γC , µG, γG, ε, λ) = µCSLPapp (1, γC , µG, γG, ε, λ) .

Assuming additionally Gk : P (L), we obtain

µS = λµC , (A2)

σS/(
√

λµC) =
√

1 + γ2
C + ε(1 + γ2

L)µL,

κ∗3S/(λµ3
C) = 1 + 3γ2

C + κ3Cγ3
C + 3ε(1 + γ2

C)(1 + γ2
L)µL + ε(1 + 3γ2

L + κ3Lγ3
L)µ2

L,

κ∗4S/(λµ4
C) = 1 + 6γ2

C + 4κ3Cγ3
C + (κ4C + 3)γ4

C

+ ε{4(1 + 3γ2
C + κ3Cγ3

C) + 3(1 + γ2
C)2}(1 + γ2

L)µL

+ 6ε(1 + γ2
C)(1 + 3γ2

L + κ3Lγ3
L)µ2

L

+ ε{1 + 6γ2
L + 4κ3Lγ3

L + (κ4L + 3)γ4
L}µ3

L,

κ3S = κ∗3S/σ3
S,

κ4S = κ∗4S/σ4
S.

Hence, SLPapp (µC , γC , µL, γL, ε, λ) is obtained by inserting σS, κ3S and κ4S from (A2) into

EG−IG(S − a)+.

In the particular case that C has a gamma distribution we get κ3C = 2γC and κ4C = 6γ2
C ,

implying

1 + 3γ2
C + κ3Cγ3

C = (1 + γ2
C)(1 + 2γ2

C) (A3)

and

1 + 6γ2
C + 4κ3Cγ3

C + (κ4C + 3)γ4
C = (1 + γ2

C)(1 + 2γ2
C)(1 + 3γ2

C). (A4)

When C has an Inverse Gaussian distribution we get κ3C = 3γC and κ4C = 15γ2
C , implying

1 + 3γ2
C + γ3

Cκ3C = 1 + 3γ2
C + 3γ4

C

and

1 + 6γ2
C + 4γ3

Cκ3C + γ4
C(κ4C + 3) = 1 + 6γ2

C + 15γ4
C + 15γ6

C .

When C has a lognormal distribution we get κ3C = γC(3 + γ2
C) and κ4C = γ2

C(16 +

15γ2
C + 6γ4

C + γ6
C), implying

1 + 3γ2
C + γ3

Cκ3C = (1 + γ2
C)3 (A5)
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and

1 + 6γ2
C + 4γ3

Cκ3C + γ4
C(κ4C + 3) = (1 + γ2

C)6. (A6)

Remark A.2. Noting that

1 + 3γ2
C + κ3Cγ3

C = µ−3
C EC3,

1 + 6γ2
C + 4κ3Cγ3

C + (κ4C + 3)γ4
C = µ−4

C EC4

and that in case of a gamma distribution we have for j = 1, 2, ...

µ−j
C ECj =

j∏
i=1

(1 + iγ2
C),

while for the lognormal distribution we get for j = 1, 2, ...

µ−j
C ECj = (1 + γ2

C)j(j−1)/2,

the expressions (A3)–(A6) are easily seen.

Obviously, similar expressions hold for L, having a gamma or an Inverse Gaussian

distribution. In particular, when L has a gamma distribution, we obtain

κ3G = 2γG − µ−1
G γ−1

G , (A7)

κ4G = 6γ2
G − 6µ−1

G + µ−2
G γ−2

G .

When C and L have a gamma distribution, we obtain by combination of (A1) and (A7)

κ∗3S/(λµ3
C) = (1 + γ2

C)(1 + 2γ2
C) + εµ2

G(1 + γ2
G)(1 + 2γ2

G)

− ε(1 + 3γ2
C) + ε{3γ2

C(1 + γ2
G)− γ2

G}µG

and

κ∗4S/(λµ4
C) = (1 + γ2

C)(1 + 2γ2
C)(1 + 3γ2

C)

− ε(1 + 6γ2
C + 11γ4

C)

+ ε{(1 + γ2
G)11γ4

C − 6γ2
Cγ2

G + γ2
G}µG

+ 2ε{3γ2
C(1 + γ2

G)(1 + 2γ2
G)− γ2

G(2 + 3γ2
G)}µ2

G

+ ε{(1 + γ2
G)(1 + 2γ2

G)(1 + 3γ2
G)}µ3

G.
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