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Abstract

Even a small amount of dependence in large insurance portfolios can lead to huge
errors in relevant risk measures, such as stop-loss premiums. This has been shown in
a model where the majority consists of ordinary claims and a small fraction of special
claims. The special claims are dependent in the sense that a whole group is exposed
to damage. In this model, the parameters have to be estimated. The effect of the
estimation step is studied here. The estimation error is dominated by the part of
the parameters related to the special claims, because by their nature we do not have
many observations of them. Although the estimation error in this way is restricted
to a few parameters, it turns out that it may be quite substantial. Upper and lower
confidence bounds are given for the stop-loss premium, thus protecting against the

estimation effect.

1 Introduction. A well-known risk measure for large insurance portfolios is the so

called stop-loss premium E(S — a)t = FE{max(0,S — a)}, where S denotes the sum of
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the individual claims during a given reference period and a is called the retention. The
classical model takes S as a sum of independent terms. This is often not realistic. On
the other side of the spectrum, the assumption of comonotonicity produces astronomical
effects due to its strong form of dependence. In practice, the dependence will be at a much
lower level. However, it has been shown in Albers [1], Reijnen et al. [6] and Albers et al.
2] that even small dependencies can lead to huge errors in relevant risk measures, such as
stop-loss premiums. Attributing on average a fraction of merely 1%-5% of the total claim
amount to a common risk part turns out to already allow increases of stop-loss premiums
by 200%-600%, when dealing with normally distributed claim size distributions, or even
up to 50000% for more realistic skewed claim size distributions; see Albers [1] and Reijnen
et al. [6]. Therefore, this small fraction of dependence should certainly not be ignored.
On the other hand, complete comonotonicity seems to be too much. In fact, on the scale
independent-comonotone the model with a (small) common risk part is still close to the
independent end-point. For a more detailed discussion on this topic we refer to Reijnen et
al. [6], pp. 247-249.

The previous results were obtained in a rather simple model. A more general and
flexible model has been presented in Albers et al. [2]. The model makes a distinction
between ”ordinary” claims, where independence may be assumed, and a small fraction of
"special” claims, where dependence appears in the form that a whole group is exposed to
damage, due to a special cause (such as an epidemic, an accident, a hurricane etc.). The
model is general in the sense that it allows groups of varying sizes, which moreover may
overlap and on the other hand do not have to span the whole portfolio. It is flexible, in
the sense that it does not require information which is and will remain unavailable from
the data. For example, it sometimes may not be easy to identify those individuals who
are exposed to a special cause, but did not file a claim. In fact, the model only needs the

realized number of special claims.

As usual in stochastic models parameters appear which have to be estimated. Replacing
the unknown model parameters by their estimated counterparts obtained from the data,
will result in estimation errors. Just as with ignoring the dependence effect, it is too
optimistic to act as if the estimation errors are negligible, unless we have a large number
of observations. This topic, the effect of the estimation step, is exactly the issue which is

addressed in the present paper.

In Section 2 the model is introduced. It turns out that the model is too complicated
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to allow an exact evaluation of the estimation effects in such a way that transparent con-
clusions can be drawn. Therefore, we use some approximations. The accuracy of these
approximations have been settled in Lukocius [4]. Two aspects play a role when consid-
ering the effect of the estimation step. Obviously, in the first place the accuracy of the
estimators, but secondly, also the fluctuation of the stop-loss premium as function of the
parameters. The set of parameters may be divided into two parts, those concerning the
ordinary claims and those who are inserted in particular for the special causes. For the first
part we have a lot of data and these parameters can be estimated very accurately. Due to
their nature, special causes do not appear very often and hence estimation of the parame-
ters linked up with the common risk part is much less accurate. As remarked before, their
influence on the final outcome, even when a rather small part is due to a common risk, is
quite large and hence estimation of the parameters connected with the special causes is the

most important issue.

In Section 3 the needed structure of the observations to obtain estimators is given
and the estimators based on them are derived. The fluctuations of the stop-loss premium
are discussed in Section 4. The behavior of the estimators is the subject of Section 5.
Asymptotic normality of the estimators, with respect to the expected total number of
claims tending to infinity, is derived. The results of Sections 4 and 5 clearly show that the
estimation effect is dominated by the part of the parameters related to the special causes.
This is one of the main conclusions of the paper, implying that we only have to worry
about that part of the estimation procedure, which simplifies matters. At the same time
it is shown that the influence of these remaining estimators in general will be substantial.
Hence, the estimation step cannot be ignored. That is the second main conclusion of the
paper. In Section 6 it is shown how we can protect against the estimation error. Confidence

bounds are derived for that purpose.

The paper is written in such a way that it can be extended in an easy way to other
risk measures as for instance the value at risk, since in the theory no special properties of
the stop-loss premium are used. Therefore, this part of the paper can be easily generalized
with appropriate modifications when other risk measures are applied. Obviously, this does
not hold for the numerical calculations, as presented in the tables and figures, where the
particular form of the (accurate approximation of the) stop-loss premium, given in the

Appendix, is explicitly used.
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2 The model. The model is a so called collective model and consists of two parts, the
ordinary claims and the special claims, where whole groups are involved. Examples are
man and wife both insured in the same portfolio, carpoolers using a collective company
insurance, catastrophes like hurricanes or floods hitting numerous insured at the same time.
For more details we refer to Albers et al. [2], where the relation with the individual model
is given and the impact of the model parameters is discussed, but see also Remark 2.1.
Here we mainly restrict attention to a brief description of the model.

We use the following notations

N : number of the ordinary claims,

C; i claim size of the ordinary claims,
H : number of groups,

Gy : k™ group size,

Dijy, : 3™ claim size in k™ group.

The total sum of claims is given by

N H Gg
S=> Ci+> > Dj. (2.1)
i=1 k=1 j=1

Here we clearly see the two parts. The first sum concerns the ordinary claims, the second
sum refers to the special claims. They occur groupswise, thus representing dependence in
the total claim size. The occurrence of a special claim does not result in a single claim, but
in a lot of claims together. So, in this part comonotonicity appears: the whole group has
damage.

We assume that C1,Cy, ..., N, H,G1,Gs, ..., D1, D1a, ... are independent random vari-
ables. The name ’dependence model’ does not come from the dependence of the claim
sizes, but from the clustering of claims in time or space or whatever. As an illustrative
example Lukocius [5] simulates a flu epidemic inside a large company, considering several
departments as potential places of the mutual infection. The payments which people re-
ceive during their illness period can be considered as claims and the sum of all these claims
then is modeled as S. The groups of a mutual infection (people which got infection from
each other) are considered as groups of a common risk, producing the special claims, while
claims from people which got the infection independently or suffer from other types of

illness fall in the category of ordinary claims.
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All the C; and Dj;, have the same distribution and also the G, have a common distribu-
tion. Of course, it is of interest to consider the general case, where the distribution of the
C’s and that of the D’s are different, but we really want to keep the number of additional
parameters (above that of the independence model) limited. Contacts with practitioners
indicate that otherwise the model becomes quickly too complicated for practical imple-
mentation. Hence, the present model may still be a simplification of reality, but it will be
much less so than the (included) classical independence model (corresponding to ¢ = 0),
because employing more parameters in principle guarantees a better fit to reality. (Recall
the remark, attributed to Tukey: ” All models are wrong, but some are more wrong than
others.”)

The supposed distributions of the random variables are as follows. Here P denotes the

Poisson distribution and pg = EG.

(i, Dji, - Gamma, inverse Gaussian or lognormal

N : P(\1—¢))

H:P(z)
Ha

Gy : P(L) with L : Gamma or inverse Gaussian.

The idea is that a fraction € of A, the total expected number of claims, is due to special
causes. As ¢ typically will be (very) small, this clearly shows that the dependence part
is really small in terms of the fraction of total expected number of claims. Nevertheless,
this may lead to a huge total claim amount, with major consequences for the stop-loss
premiums. Since special claims do not occur that often, a pretty high aggregation level
is needed. The assumption, therefore, that all special claims lead to similar group sizes,
seems rather awkward. Hence G}, the number of realized claims in the £ group, follows
an overdispersed Poisson distribution.

To obtain independence of H, G1, G, . .., the following assumptions are sufficient: take
H, Ly, Ly, ... independent, let G1|H = h,Ly = 13, Ly = ly,..., Go|H = h, Ly = Iy, Ly =
lg, ... be independent and assume that the distribution of Gy|H = h, Ly = l1, Ly = I, . ..

depends only on [;. Then it is easily seen that
P(H:h,Glzgl,,Gh:gh) :P(H:h)P(Gl :gl)P(Gh:gh)

So, essentially, we first select an L;, and given its outcome [; we subsequently let G; follow
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a Poisson distribution with parameter [;, thus allowing more variation in the group size

than in case of a Poisson distribution with a fixed parameter.

Remark 2.1. As stated before, the dependence comes in, because a whole group of claims
accumulates together. To get some additional feeling for the area the present model does
cover we translate (2.1) to a corresponding individual model. Consider a large portfolio
with m insured. The portfolio is divided into h groups, each of group size g. The ;™
insured in the ** group has, just like everybody else, a claim probability (1 —¢) ¢ for an
ordinary claim. Let X;; = 1 denote that the j™ insured in the " group has an ordinary
claim and otherwise X;; = 0. Then the first term of the total claim amount S is given by

h g

> D XiCy

i=1 j=1
with P(X;; = 1) =1— P(X;; = 0) = (1 —¢) ¢ and C}; the claim amount of an ordinary
claim. This part of the model is in fact nothing else than the usual independence model.
But in addition to it, the whole i** group may be hit all together, due to a special cause,
in which case each member of the group has damage. Here we clearly see the dependence:
if one member of the group has damage due to a special cause, all the others of the group
have a claim as well. Denoting V; = 1 when the *" group has been hit and 0 otherwise,

the second term of S is written as

h g
22 VD
i=1 j=1
with P(V; =1) = 1— P(V; = 0) = eq and D;; the claim amount of the j* insured in the i*"
group in case of a special claim. Consider two members of the same group, say the j* and
7**" member of group 1. Their contribution to the total claim amount due to special causes

is: ViDy; and Vi Dyj«. Clearly, their claims Vi D;; and Vi Dyj+ are positively dependent,

since they have V; in common. The number N = Z?Zl ?:1 X;; of ordinary claims has a
binomial distribution with parameters m = hg and (1 — ¢) ¢ (for short: Bin(m, (1 —¢)q)).
Similarly, the number H = 2?21 Vi of groups that have been hit is Bin(h,eq) with h =
m/g. Writing A = mq and replacing Bin(m, (1 —¢) q) and Bin(h,eq) by P (A(1 —¢)) and
P (\e/g), respectively, where we have used that heq = meq/g = \e/g, gives the collective

model
N H g

i=1

k=1 j=1
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To allow groups of varying sizes, which moreover may overlap and on the other hand do
not have to span the whole portfolio, g is replaced in (2.1) by the random variable Gy, the
number of realized claims in the &t group. In this way a more general and flexible model

is obtained. For more details we refer to Albers et al. [3].

The choices of the distributions of N, H and G is already discussed in Remark 2.1.
Let us now concentrate on that of C' and L and on the range of parameters for all the
distributions. There are quite a few claim size distributions available in literature. We
largely follow Reijnen et al. [6] and consider for the distribution of C' the widely-used
gamma, inverse-Gaussian and lognormal families. A prototype distribution for L is the
gamma distribution. The simulation experiment in Lukocius [5] shows that indeed this
distribution performs nicely. A second choice that proves to be quite suitable is the inverse
Gaussian distribution. A third choice is the lognormal family. However, this turns out to
be too extreme: huge cumulants result and the tails really seem too heavy to adequately
model the mixing aspect of G.

Let the standard deviation of a random variable be denoted by o and let v = o/u be

its coefficient of variation. The range of parameters that is of interest is given by

A > 400, < 0.05,5 < pg = pur, < 20,0.05 < vo < 2.5 (2.2)

vr < 1.5 for L : Gamma, vy < 2.5 for L : inverse Gaussian.

Let us now discuss this choice briefly. For more detailed information about the choice of the
range of parameters we refer to Albers et al. [2], Section 5. As written in the Introduction
the model is too complicated to allow an exact evaluation of the estimation effects in such
a way that transparent conclusions can be drawn. Therefore, we use some approximations.
Obviously, these approximations should be sufficiently accurate. Therefore, a value of
A > 400 seems to be minimally required, because otherwise the events of interest will be
encountered only very rarely. For instance, when A = 100 and ¢ = 0.02, the expected
number of special claims is merely 2. If we take ug = 10, the expected number of such
groups would only be 0.2. This really seems to be too small. Because a small fraction
of dependence can create big problems already, we restrict attention to ¢ < 0.05. The
lumpiness aspect is already present in the model, studied in Reijnen et al. [6]. So, we
simply take the same range for ug = pr as in that paper. The choice of the range of ¢ is
based on the work of Reijnen et al. [6], where the skewness of C' played an important role

in the rule of thumb, which provides an accurate approximation. The extensive numerical
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study in Chapter 3 of Lukocius [5] shows that when L follows a gamma distribution v, < 1.5

works fine and when L follows an inverse Gaussian distribution even v, < 2.5 is fine here.

Remark 2.2. The group size G has expectation p¢g, which in the range of parameters of
interest varies between 5 and 20. Hence, G will as a rule be at least equal to 2. However,
a value of GG equal to 1 is possible. In that case we do not really have a group and it will
not be recognized as such. Therefore, one might argue that we should restrict attention to
distributions of G starting with 2. For most of the theory developed here this will cause no
problem: the results continue to hold for general GG. In view of that we will often give the
results for this general setting, using the parametrization ug, g instead of pr, vy (see also
Remark 3.1). By definition of G the relation between the two forms of parametrization is

simply given by

po = E(E(G|L)) = pu,

8 = var () = i (oar(B(GIL) + Bloar(GIL)) = i*{var(D) + EL) =3 + g’

On the other hand, in practice we do not have to worry about the restriction, because a
value of G equal to 1 will occur only rarely and we may ignore it without making large

mistakes.

Remark 2.3. Many other generalizations of the model than the one already mentioned
(different distributions for the C’s and D’s) can be easily thought of. To give but a few
examples: the D;; can have different distributions for varying 4, all kind of dependencies
can exist between the random variables involved, e.g. positive correlation between the
G; and the D;;, the distributions of N and H do not necessarily have to be Poisson etc.
However, as explained before, we really want to keep the number of additional parameters
(above that of the independence model) limited. Therefore, we do not work out this kind

of generalizations in the present paper.

3 Observations and estimators. The basic data are for each individual the pairs
(X;,Y;) with X; the claim amount and Y; the group code, 0 for the independent (ordinary)

claim and 1,2, ... for the various dependent claims (due to a common risk). From the
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observed basic data (z;,y;) we can deduce

n : the number of independent claims
Cl, ..., Cy - the claim amounts for the independent claims

h : the number of group codes for the dependent claims
g1, ---, gn : the group sizes

di1, ..., dg, : the claim amounts for the dependent claims.

It will typically not be enough to have these data for one year, we usually will need data from
several years t = 1,...,u, say. The reason for that is the scarcity of special claims. To get
reasonable estimates of €, g and v we need data from an extended period. The estimators
will be based on Ny, Cuy, ..., Oty He, Gty - -+ s Gy Diney -+ DGy s for t =1, u

For the observed data ng, ci¢, ..., Cuyts Pty G1ty - -+ s Ghyts d11t,y - - - ,dghthtt, witht =1, ..., u, the
likelihood equals

= nt) {f[ fC(Cit)} H ht {HP = gkt)} {l_t[ﬁfc’(d]kt)}] .

u

I1

=1 k=1 j=1
Using
exp{—\1—¢e)}[\(1—-¢e)™
R
exp{ —e X\t Heust)

the likelihood can be written as

u  h
eXp(_e)entot+htotphtot(1 o ntot X { H = Gt }

u ne ht Gkt
LTt} {Hch }] Ao
t=1 L Li=1 k=1 j=1 teivt
with

0 = 0()‘7€a ,MG) = U)‘(l —&+ EluC_}l)a

e’
l—c+epg"’

u u
Nitot — E T and htot = E ht.
t=1 t=1

p=Dple, pa) =



30 ALBERS AND KALLENBERG

For short we will often write n and h instead of n;,; and hs,. Maximizing the likelihood

w.r.t. A for given e, ug gives § = n + h and hence

n+h

A=A = .
(67MG) u(l B €+ E,ug;l>

(3.1)

Inserting it and noting that exp(—@\)@\”*h does not depend on (g, ug), the likelihood is
maximized w.r.t. ¢ for given ug by taking p = h/(n + h) and hence

h
h+nug'

™)

£ = &) = (3.2)

Inserting this and noting that p"(1 — )™ does not depend on pug, it is seen that we end
up with the likelihood of the G’s times the likelihood of the C’s and D’s. This means
that we can proceed with estimating the parameters of the distribution of GG using only the
G-observations and, separately, estimating the parameters of the distribution of C using
the C- and D-observations.

Taking for L the gamma-distribution, it follows that G has a negative binomial dis-
tribution. Although in general the number of observations from this negative binomial
distribution, Y/, H;, will be not very large, the expectation of G is as a rule not small,
say between 5 and 20. Under these circumstances, Saha and Paul [7] show that moment
estimators are a good alternative to maximum likelihood estimators.

Both when L has a gamma distribution and when L has an inverse Gaussian distribu-
tion, G has a distribution with two parameters. Moment estimators do not depend on the
parametrization. It is convenient to take as parametrization for G its expectation ug and
its coefficient of variation ¢ (see also Remarks 2.2 and 3.1). The moment estimates of the

expectation and coefficient of variation are

//;ngzézzgkta

Inserting fi¢ in €, see (3.2), and writing gior = Y 1, Zztzl Jrt, yields

h _ hg _ Gtot
h+ng ' hg+n g+ Mot

£=

(3.3)
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which as the observed fraction special claims indeed is the "natural” estimate of €. Inserting

£=hg/(hg+n),Jic =7 in A, see (3.1), moreover gives

T hg+n _ Gtot + Niot

U U ’

which as the observed total number of claims divided by the number of years also is the

"natural” estimate of \. Writing

7 mle b Yl
u

we may also write
X =hg+n.
For the estimation of the two parameters of the distribution of C' we have many ob-

servations at our disposal. Hence here we clearly can use moment estimators as well. As

parametrization we once more take the expectation uc and the coefficient of variation v¢.
This leads to

U ne u ht 9kt .
Dot Qi Cit T D ey Dy o1 Akt

fe=c+d= 7
Mot + Gtot
2 " . , X
~ \/62 + d2 —c+ d . . zi sz _|_ & t_ gk_t d2
Yo = with ¢2 + d? = 2i=1 Qi Cit T Q=1 2k i=1 Ykt

c+d Ntot + Grot

Summarizing: our estimators are

\/(J2+D2—C+D2

fic =C+ D, ¢ = ,
j276; e CtD
_ [e2ea
g = G,A = =
Ha e G
o Giot 3= Giot + Niot
Giot + Niot’ U .

Remark 3.1. Obviously, we can replace the parameters ug, 7g and its estimators jig, Vg

by the parameters iy, 7, and the corresponding estimators iy, 7. Because pug = puz and
0% = ur + o2, implying that vz = ug'\/02 — pe, we get

//1\/L 267

J = _ . (3.4)
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As long as 7y, is not equal to 0 or close to 0, there is no problem with 7. However, when
v = 0 (or close to 0) it may easily happen that G2~ G — G < 0 and hence a problem
arises with application of (3.4). Note that the case vy, = 0 corresponds to a fixed parameter
of the Poisson distribution of G, a situation which we also want to take into account. In
view of the problems with (3.4), indeed it is more convenient to use the parametrization

La, Yo (see also Remark 2.2).

4 Behavior of E(S —a)*. The influence of the estimators on E(S — a)* depends on
the behavior of E(S — a)T as a function of the parameters pc, o, fia, Vg, €, A as well as
on the accuracy of the estimators. For instance, if E(S — a)™ is a flat function of the
parameters uc, Yo, fa, VG, €, A and the estimators are accurate, the small changes due to
estimation will have not much effect. So, these two points have to be considered: how is
the fluctuation of F(S — a)™ and how accurate are the estimators.

Obviously, the retention a is not just a given number, but will depend on ug = E'S and
os = m : the larger ug and og, the larger retention a will be chosen. Defining k by
a = pus + kog, or

L — a— NS)

gs

we will assume that k is chosen in advance, determining the retention a in ”standard units”.
That means that in our approach k£ does not depend on the parameters, while a does depend
on the parameters uc, vo, g, Yo, €, A through pug and og.

In order to get insight into the fluctuation of

. +
E(S — a)" = osE (S s _ k)

gs

we have to simplify ogE(og' (S — ps) — k)T somewhat, because otherwise no conclusions
can be drawn. We apply two simplifications. In the first place, osE(og" (S — pus) — k)*
is replaced by an approximation, which is simpler, but still sufficiently accurate in the
region where we are interested in, see (2.2). This approximation, SLPapp, say, concerns
the Gamma — Inverse Gaussian (G — IG) approximation. For a short description of this
approximation see the Appendix. That this approximation is indeed accurate in the region
considered is shown in the extensive numerical study carried out in Lukocius [4].

Since even then the resulting function is rather complicated, we apply in addition a one

step Taylor expansion on the approximation around the true value (ico, Yoo, 6o, Yco, €0 Ao)
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Table 1: Accuracy of approximation SLPappl.

(e, ves pa, Ve, €, A k) v | SLPapp | SLPappl | rel. error | abs. error
(100000, 0.5, 10, 0.6, 0.05,400,0) | 0.51 | 1089184 | 1131613 0.04 42429
(110000, 0.3, 12,1, 0.04, 450, 1) 0.96 | 339776 332509 0.02 7267
(90000, 0.9, 18,0.7,0.05,450,2) | 0.66 64051 67969 0.06 3918
(150000, 0.2,10,1.1,0.02,400, 3) | 1.05 13180 15544 0.18 2364
(70000, 1, 20, 1,0.03, 400, 0) 0.97 | 957230 | 1009965 0.06 52735
(120000, 0.1,10,0.6,0.03,450,1) | 0.51 | 275809 272302 0.01 3508
(200000, 0.8,20,0.5,0.04,400,2) | 0.45 | 114474 115798 0.01 1324
(150000, 0.5, 10, 1.1, 0.05, 400, 3) | 1.05 18330 18904 0.03 575

of the parameters. We call this function SLPappl, which is given by

SLPappl (e, Yo, e, Ya, €, A) = SLPapp (f1co, Yeo, fcos Yao, €0, Ao) (4.1)

0
+ (e — peo) aM—CSLPapp (tco, Yco, 6o, Yo, €05 Ao)

0
+- (A=) ESLPGPP (Hcos Yoo, 1460, VG605 €05 Ao) -

Table 1 gives an impression of the accuracy of SLPappl. Here C' and L each have a (dif-
ferent) gamma-distribution and for the true value of the parameters we have the following
representative choice: (fco, Yco, o, Y60, €0, Ao) = (100000,0.7,15,0.8,0.03,400), imply-
ing v = 0.76. We have SLPapp(100000,0.7,15,0.8,0.03,400) = 1164042, 292282, 56003,
9086 for k = 0,1, 2, 3, respectively as our starting values. For convenience also the value of
L = \/7E — pg! s given.

This table indicates that the approximation by SLPappl is sufficiently accurate to
proceed with. Note that

SLPappl (f1co, Yoo, hGos Yao, €0, Ao) = SLPapp (o, Yoo, Hao, V6o, €0, Ao)

and hence Table 1 gives also interesting information on the error in

SLPCLPP(ZZC’/’?C,ZIG,aGaa >\) - SLPCLpp (MCO)WCO?MGO77G’07€Oa )\0)

due to replacing SLPapp by SLPappl. Hence, further on we concentrate on SLPappl.
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Table 2: Coefficients of SLPappl at (pco, Yoo, ao, Y60, €0, Ao) = (100000, 0.7, 15,0.8,0.03,

400) for k =0,1,2,3.

ALBERS AND KALLENBERG

W%SLPapp a,%SLPapp %SLPapp %SLPapp %SLPapp a%SLPapp
0 11.6404 3.8817pco 0.1047 uco 1.3173pco | 61.9452pc0 0.01504¢0
1 2.9228 0.7076co 0.0632p1¢0 1.0253pco | 21.63621¢0 0.0032¢0
2 0.5600 | —0.0210u¢0 0.0343 ¢ 0.6532uco | 6.4573pco 0.0003 ¢
3 0.0909 | —0.0459u¢0 0.01164¢0 0.2336pco | 1.5790uco | —0.0001 e

The fluctuation of SLPappl is determined by the coefficients

0 0
W—CSLPGPP(MCOKYCO,MGO;’YGoyéTo; )‘0)7 ceey 5SLPGPP (MCO,’VC(J,/LGOWGO,%,)\O) .

To get some impression about the order of magnitude of these coefficients we have calculated
them at (uco, Yoo, aos Yao, €0, o) = (100000, 0.7, 15,0.8,0.03,400) (again for C' and L each
having a (different) gamma-distribution and for £ = 0,1,2,3). The results are given in
Table 2.

In view of the very small coefficients and the fact that X is large it seems better to write

the term

0
(A— o) aSLPapp (fco, Yeo, 6o, V6o, €05 Ao)

as

D V)
% XNo=xSLPapp (fico, Yo, Haos Y60, €05 Ao) -
Ao o\

Indeed, in the theory which will be presented next we perform asymptotics for A — oo

and the appropriate quantity to consider then is (A — \g) /Ao, see Theorems 5.1 and 5.2.

A similar remark applies to € (giving rather large coefficients) and hence we will consider
(e — €0)/e0.
5 Behavior of the estimators. We study the behavior of the estimators

lic, oy Ha, VG, € A

These are functions of the vector

(C+D,C2 +D2,57@,F,N> .
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The following theorem gives the limiting distribution of this vector. The skewness of
a random variable X is denoted by k3x = o 3E(X — p)? and its kurtosis by rux =
o B(X — )t -3,

Remark 5.1. Theorems 5.1, 5.2, 5.3 and 6.1 continue to hold for other distributions of C'

and G as well, provided that their fourth moments are finite.

Remark 5.2. In the following theorems we assume that A\ — oo. That seems to be the
natural way, because A is the total expected number of claims, that is the expected number
of observations. The other parameters are assumed to be fixed. At first sight it might
seem curious that ue is called fixed, while in applications it is very large, for example
100000. However, this parameter is essentially a dummy parameter (although it should
be estimated!), see also Section 6. We investigate the effect of the estimation in a relative

sense, so to say in pc-units and therefore it can be considered as fixed.

Theorem 5.1. Assume that X — oo and that u, uc, Yo, pia, Ya, € are fized. Let

D RV
X1A2{0+ —1}—1”,
2% Yo
C?+ D2 Vu
XQ)\:{ D) —(1‘|”Yé)}—a
C Yo
ngz{ﬁ—l} cud
e ha
G? EUN
so={Z ot |2
G e
X5,\={HMG—1} Eu
EA e
N
Xey = —1 A1l —e).
o= {3y 1 VAT

Then, as A — oo,

(X1x, Xox, Xax, Xan, Xox, Xen) — (Ur, Uz, Us, Uy, Us, Us)
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with

1 2
(Ula UQ) ~ N (Oa 07 N oo > )

2 + YcR3C ’)/% (I<L4C + 2) + 4’)@%30 + 4

2 3 (o
(Us,Uy) ~ N (0,0, e pae (2 +yaksa) ) |

G (2 +aksa)  uene{Ve (Fae + 2) + 4yarse + 4}
Us ~ N(0,1), Us ~ N(0,1)
and (Uy,Us) , (Us, Uy) , Us, Ug independent.

Proof. The proof follows from standard asymptotic normality of random sums, see e.g.

Corollary 1 in Teicher [8], and direct calculation of the involved moments. For instance,
(M<C7 ﬁ>_EW—mﬂy_mm%%%%%&D—M%w%%+w
MC'VC7 M%Vc

e e
= R3cYo + 2.
The role of "n” is played by A. The ”inflation” of the covariance terms due to different
limiting values of the (random) numbers of terms in the sums does not appear here, since
the nonzero covariances have the same number of terms. For example, both C' + D and
C? + D? have as number of terms Nyt + Gior.
Obviously, N, having a P(A(1 — ¢))-distribution can be considered as a sum of A inde-

pendent random variables, each having a P(1 — ¢)-distribution, and similarly for H. O

Remark 5.3. Theorem 5.1 can be applied to G : P(L) with parametrization pur,~yr
(provided that the fourth moment of L is finite). We rewrite X3, and Xy, as

X&:{E_l} cu

and use formulas like
V& =1+ gt
We get asymptotic normality with
iz (2 4+ vrksr)
+2+ 397 + pp
pevi (24 yeksn)  pEyi{i (Rap +2) + dypks + 4}
+2 4+ 3y +ugt +20r (373 kar + 872 4+2) + 6+ Y2 + gt

v+ gt
(Ug, U4) ~ N 07 07
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Obviously, in X5, we can replace ug by pr.

We are interested in SLPappl, which is a linear combination of jic, ,/): The next

theorem gives the limiting distribution of such functions.

Theorem 5.2. Assume that A\ — oo and that u, pc, Vo, ha, Yo, € are fived. Let cq, ..., cg be

deterministic functions of uc, Yo, ba, Yo, € and A. Define

fic — pc
cQ————
He

Zy = + ¢ (e — o),

A=\

~ N E—¢
Zz=63(MG—MG)\/5+C4(7G—7G)\/E+65( . )\/E+66

Then, as A — oo,

(é, 2) Var = (Vi, Va) (5.1)

with Vi, Vy independent and Vi, Vy ~ N (0, 1) with

1
1t =7{cl + aca(ksec — 270) + (e + qfact g - Yoksc)

and

2 _ 2,32
Ty = GQHGVa

2 2 ( 2 1 1
+ caVe | Yo — Yeksa + Z/@,LG + 5

+es(1—e){pe(l—¢) (1+18) +¢}
+cg{pee (L+18) +1—¢}

+ C3C4M207(2;(“3G - 27¢)

+2e305 (1 — &) ugee

+ 20306V E g

+ cacspae(1 — €)(ksa — 27a)

+ cacoticVeVE (Fsa — 276)

+ 2c5¢6ve (1 — ) {pa (1+18) — 1}

Proof. We have

—Mc,u_ B ux = yo X (5.2)
c
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and

2
\/1 -+ ’Y% -+ ’YcXg)\ (U)\)_I/Q — {1 + ’Ych)\ (u)\)_l/2}

1 + ’Ych)\ (u)\)_l/2

(e — o) Vul = — e | Vu.

It follows from Theorem 5.1 that

2
\/ 192 + 90 Xar (wA) ™ = {1+ 90 X0 ()}

:\/7% +yeXox (uN) T = 290 X0 (uh) T2 4+ Op (A1)
=70+ 1 X0y ()T = Xy (wh) T+ 0p (A7)

as A — oo. Hence, we get

\/1 A2 4 e Xon (uN) Y2 — {1 e X (uA)W}2
1+ ~ve X1y (uh) 2
e+ 300 ()T = Xy (uN) TP+ 0p (A1) — 70 — 2 X0 (uh)
1+ vc X1 (ud) ™2
=1 X0y (uN) 7% = Xy (uN) T2 =42 X0 (uA) T2+ 0p (A7)

e

and thus
(e —7c) Vur = X5 — (1 4+92) Xia + Op (A7) (5.3)

as A — oo.

Next we show that |c; /71| and |co /71| are bounded above as functions of A. Let U; and
U, as given in Theorem 5.1 and X = ycUy,Y = 21U, — (1 ++2) U Then we have 7§ =
var (c; X + oY) and hence 72 > {1 — p? (X,Y)} max {var (c;X) ,var (c2Y)}. Because X
and Y do not depend on A and therefore also var (X) ,var(Y) and p (X,Y’) do not depend
on A, the boundedness of |¢; /71| and |ca /71| immediately follows.

Combination of (5.2) and (5.3) and application of Theorem 5.1 gives
{01%;/“60 + 2 (o — 70)} VUl — Vi
c

We have
(fic — pe) Veuk = jigl* Xy (5.4)



ESTIMATION EFFECTS ON STOP-LOSS PREMIUMS UNDER DEPENDENCE 39

and

o . _ -~ 2
G2 —G =2 (1+2) + 1 (cul) U2XQA——<ug—%uZQ(€uA) UQ)QA) .

It follows from Theorem 5.1 that

—2

G2 -G

2+ il (2un) 2 X — 208 (cuh) P Xy Op (A1)

—neve + 3Pt (euN) TP Xy — iP5t (eud) T Xy 4+ Op (A7)

and thus
G2-G
pa + ,u?é/z (eu) ™% X

= L e Xy — 206 (1+92) Xan} + Op (A1)

(Fc — 76) Veul =

— G EUN

as A — oo. It is seen, cf. e.g. (3.3) that

_ HG
E = —— —
AG+ N
By Theorem 5.1 we get
Hé:sA{L+@f@um*”XQ}{1+@f¢mmﬂﬂxg} (5.5)

::gA{l%—ugZGWAydﬂ(X%A+qu)%—Op(A*w}.

Together with
N:Aufw)h+{u—@un*”xw} (5.6)
this leads to

£ {1 + ¢l (2ud) T2 (Xsx + X3p) + Op (/\_1)}

=
gﬁﬁwgﬂamrﬂﬂxm+xayuxmxw}+U_SW1+ﬁ1—@w§4ﬂxﬂ
=+ (1) ug® (W)™ (Xsx + Xan) — € (1 — )" (uh) 72Xy + Op (A7)
and thus

(5 ; 6) eur = (1 -¢) Mlc/z (Xsx + Xay) — /2 (1 — €)'/ Xor + Op (A_I/Q) (5.7)
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as A — oo. Finally, we have

In view of (5.5) and (5.6) we get
HG+ N
A
—c {1 + 2 (cu) TV (Xsp + Xan) + Op ()\‘1)} (1) {1 F{(1—e)ur} Xﬁk]

1+ (epa) 7 (uN) V2 (Xan + Xan) + (1 — )72 (ud) ™2 Xy + Op (A7)

and hence
A -\
5 Vaud = (epa) " (Xsx + X30) + (1 — ) Xy + Op (A7) (5.8)
as A — 0o.
By a similar argument as before it follows that |c3/7s|, ..., |cs/T2| are bounded above

as functions of X\. Note that 7 is of the form wvar (c3X; + ... + ¢ X4) and thus 72 >
(1 — pi*)var (coiX;), @ = 1,...,4, where p}? is the multiple correlation coefficient of X;
with the other X;’s, which does not depend on A.

Combination of (5.4)-(5.8) and application of Theorem 5.1 gives

E—¢ A=A\

)\/E+c6

€

{Cs(ﬁc—ﬂc)\/5+C4@G—’VG)\/E+C5( }Tgl uA — Va.

The asymptotic independence of ¢; (lic — puc) /uc + c2 (Yo — veo) and ¢s (i — p1a) Ve
+cs (Vo —v6) Ve + s (E—€) [veE+ co <X - )\) /A completes the proof. O

Next we apply Theorem 5.2 in order to get an idea of the impact of the estimators on

SLPappl. The error due to estimation, divided by pco, equals, cf. (4.1),

u@é{SLPappl (ﬁcﬁc,ﬁcﬁaaa )\> — SLPapp (MCOa7007NG07'7G0a507/\0)}
_ <ﬁc — Mco
Kco

0
) 5 SLPapp (f1co, Yoo, 6o, Va0, €0s Ao)
He

N .0
+ (e — VC)ucé%SLPapp (1c0, Yco, G0, Y60, €0, Ao)

A=A B
4ot ()\_0> )\OuaéaSLPapp (Hcos Yoo, 4o, VG0, €05 Ao) -
0
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The asymptotic distribution of ugg{SLPappl <ﬁc, Yo, e, Yas €, X) —SLPapp(iico, Yoo, o,
YGo, €0, o) }V/ uNg is obtained by application of Theorem 5.2 with

0
c1 = =——SLPapp (pco, Yeo, 1ao, V6o, €0, No)

Ouc

.0
Cy = ucéa—SLPapp (Lco, Yoos 6o, Y605 €05 N0)

o]

_ 0
c3 = € I/QMCéaM—GSLPapp (Hco, Yoo 1o, VG0, €0, Ao)

_ .0
e =cy" QMCé%SLPapp (1c0> Yoo, 160, V60, €05 Ao »

0
cs = € uc()%SLPapp (oo, Yoo, 14Go, Y605 €05 Ao)

.0
6 = Aoucéas LPapp(pico, Yoo, [1Gos V605 €0y Ao)-

The result is a normal distribution with expectation 0 and variance 77 + 75. Hence, this
variance gives an idea of the error due to estimation.

As an example we calculate 7 and 72 for (1o, Yco, o, Yo, €05 Ao) = (100000, 0.7, 15, 0.8,
0.03,400) and k = (a — pus)/os = 1 (again with C' and L each having a (different) gamma-
distribution). Note that SLPapp(100000,0.7,15,0.8,0.03,400) = 292282 in that case (see
Section 4). The values of ¢i,...,cs are easily obtained from Table 2. We get (for the

gamma distribution it holds that k3 = 2y and hence the coefficient of ¢;cy equals 0)

ey = 4.19

169780 (Kaco — 27c0) = 0

2.2 /9 1 1
Yco0(Veo + 1aco + 3~ ~Yooksco) = 0.18
and therefore
T2 =4.37.

Using that L has a gamma-distribution, direct calculation (see also (AT7)) gives k3o =

2vq — ualfyél and ryg = 672 — 6u51 + ,an’yéQ. We obtain
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Ca o = 287.43 (5.9)
1 1
50421 (MGO'Yé*o - Wéo + 5#0(1) + u007é0> = 265.21

2 (1 —e0) {1co (1 —€0) (1 +7¢) + €0} = 325.47
ca {,LLGQ€0 (1 + véo) +1- 50} =2.84

— C3C4fbcoYeo = —29.91

2¢c3cs (1 — 20) pdg Ve = 381.90

2¢3C6\/EollinYao = 23.46
- C4C5’7G0(1 - 60) =—17.21

- C4C6’VG0\/% = —1.06
2e5¢6v/E0 (1 — £0) {pco (1 +78) — 1} = 38.31

and hence
75 = 1280.43.

This example is really illuminating. It is clearly seen that the contribution of estimating
pe and ¢ is not very high: 7¢ is much smaller than 7. The reason is that we have a lot
of observations for estimating puc and v¢. Typical values for u and A are values like 7 and
400, respectively. That means about 2800 observations to estimate the parameters of the
common distribution of the C; and Dj;. Due to this large number of observations, these
estimators are very accurate. Similarly, estimating A gives also a not very high contribution
to the variance 72 + 7. That is seen from the various terms contributing to 753. The terms
in which estimating A is involved, that is the terms where cg appears, are much smaller
than the other terms.
This leads to the following

Conclusion. The estimation error is dominated by the estimation of the parameters
related to the common risk, that is by estimating ug, 7¢ and €. Therefore, the parameters
of the distribution of the C; and Dj;, uec and 7¢, and also A can in fact considered to be

known.

Remark 5.4. Theorem 5.2 can be applied to G : P(L) with parametrization pur, .
(provided that the fourth moment of L is finite), replacing 3 (fig — ug) vVe+es Yo — 76) Ve
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by
s (Ar — o) Ve + ca (W — 1) Ve and 73 by
5 = ¢ (uing + 1)

1

2 2 (.2 LY IR 9
+ et (77— vk gRant g ) A s+ 1 gt (149;7)

+ (=) {u (1) (1+7) + 1}
+cg{pure (1+97) +1}

+ cscapy g (ks — 291)

+ 2c3¢5 (1 —€) (pivg + )

+ 2e306V/E (1377 + bz

+ C4C5/LL’7%<1 —¢)(ksr — 27vL)

+ cacepirViVE(Kar — 271)

+ 20560,V (1 —€) (14+77) -

So, in the sequel uc, 7o and A are assumed to be known, while ¢, ug = pur and v4 or

vy, are estimated by

é\: Gtot
Giot + Niot’
fa = pir =G,
. JE-T -G -G
rYG_ E ;'VL— a

with

u ht

Grot = > > G, Higp = > Hy, Nigp = > N,
t=1 k=1 t=1 t=1
ht
> G

t=1 k=1

U

_ 1 it 1
G - Htot ZZth,G2 a Htot

t=1 k=1

U

Writing SLP (i, Yo, lia, Ve, €, /):) for the estimator of the stop-loss premium E(S —a)™,

we now have the following result.
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Theorem 5.3. Let (oo, Yco, 1haos Y60, €0, Ao) be the true value of the parameters. Then
SLP(jic,Ac: fic: Jc. €. A) ~ SLPappl (tico, Yo, fic: A & Ao)

and

pco {SLPappl (pico, Yoo, fic, A, € Ao) — SLPappl (tico, Yo tco, Yaos €0: No) } T~/ udoeg — V

as A\g — 00, with V-~ N (0,1), in which

T8 = UG (5.10)

4 2
+E(1—e){pc(l—e) (1+78) +¢}

+ cseapiee (Ksa — 276)

2 2 (.2 1 1
+ cieVe | Yo — Yokse + wRag + 3

+ 2cs05 (1 — €) e
+ cacspcre(1 — €)(kae — 27a),

where
4, 0
€3 = #C(l)_aMG SLPapp (f1co, Yco, Haos Y60, €0, Ao) (5.11)
4, 0
C4 = Mc(l)a—SLPapp (1100, Ycos Haos V6o, €0, Ao) 5
G
4, 0
€5 = Eottco ST Papp (o, veo, Hao, Yo €0y Mo) -
Proof. The limiting result follows directly from Theorem 5.2, because

ool SLPappl (pco, Yeo, g, Vg, € Ao) — SLPappl (pco, Yeo, Hao, Y60, €0, Ao) }

g— €0

= ¢3 (e — pao) + ¢4 (Ve — Yao) + €5 5
0

with cg, ¢4, 5 given by (5.11). (Note that here we have used in the formulation of the
theorem v/uMgeo instead of \/ulg, because the expected number of special claims equals
U)\o{fo.) [

Remark 5.5. Theorem 5.3 can be applied to G : P(L) with parametrization ur,~yr, (pro-
vided that the fourth moment of L is finite), replacing SLP(jic, Vo, i, VG €, X), SLPappl(



ESTIMATION EFFECTS ON STOP-LOSS PREMIUMS UNDER DEPENDENCE 45

Hco, YCo, ﬁG? /F}?Ga a )\0) and SLP(Ippl (MCO) Yco, G0y YG0, E0, )\0) by SLP(ﬁCv 6707 ﬁLv :Y\La a )\)7
SLPa’ppl (/1’007 Yco, ﬁlnafn é\J )‘0) and SLPappl (/’LCO7 Yco, Lo, VLo, €0, AU)? respectively, and
72 by

= Cg (N%Wio + Mio) (5.12)

4
+¢5 (1 —e0) {pro (1 = €0) (1 +770) +1}
+ ezeaityVio(#sro — 27ro)
+2c3¢5 (1 — o) (170770 + H10)
+ cacsproio(1 — o) (K320 — 2710),

1 1 1
+c {MLO”Y%O (”Y%o — YLoK3Lo + T K4aLo + 5) Y2, + Yrokaro + 1+ 2u (1 + vz )}

where
0
= lcom— o SLPapp (pco, Yo, Los VL0 €05 Ao) (5.13)
0
IuCOa SLP(Ipp (MCO)VCO)MLOaPYLanOa)\O)

- 8
Cs = 50#0()%5[/1[)@19]7 (Ncoﬁco, Lo, YLo,€o, )\0)-

6 Effect of estimation, protection. Having established readily applicable formulas
for the estimation effects, we investigate the impact of the estimation on the stop-loss
premium E(S — a)t. We start with an example. Let the true values of the parameters be
equal to (Lco, Yoo, [ao, Y60, €0, Ao) = (100000, 0.7, 15,0.8,0.03,400) and k = (a — ps)/os =
1. Let C and L each have a (different) gamma-distribution. As we have seen, see Section
4, SLPapp(100000,0.7,15,0.8,0.03,400) = 292282 in that case. We may for example ask:
what is the probability that SLPappl (1co, Yoo, s Vg, €, Ao) is smaller than 200000, that
is an error of more than 92282? We apply Theorem 5.3. Direct calculation gives 72 = 36.51
and hence, with ® the standard normal distribution function and noting that 10~°(200000 —
292282) (36.51) /% /12 = —0.53, we obtain

P(SLPCLppl (NCOu Yco, ﬁG? ;}76'7 g’ )\0) < 200000)
=P(10~{SLPappl (1ico, Yco, fic, Ia & Ao) — 292282} (36.51)"? V/12u < —0.53/1)

~®(—0.53v/u).
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Taking only one year, that is u = 1, we see that with a probability as large as 30% we get
an estimated value smaller than 200000, while in fact it should have been 292282. This
makes clear that indeed one year is not enough. The reason for this is of course that in
one year the expected number of groups is (in this case) only e\/ug = 12/15 = 0.8. This
makes the estimation of ug, 7o and € very inaccurate. When taking u = 7, the probability
reduces from 30% to 8%.

We see from the example that the estimation effect may be considerable and we may
want to protect ourselves against the estimation error, in the sense of confidence bounds

for SLPapp. The following theorem deals with such a protection.

Theorem 6.1. Let (jico, Yco, 1haos V6o, €0, Ao) be the true value of the parameters. Then

lim P(SLPapp (pco, Yoo, o Yaos €0, o) < UB (o)) =1 — a,

Ag—00

Jim P(SLPapp (1co, Ve, 6o, Va0, €0, do) > LB (a)) =1 - a,

0—00

/\lim P(LB(«/2) < SLPapp (1o, Yoo, Hao, Y60, €0, o) < UB (a/2)) =1 — «
0—00

with

UB (CM) = SLPappl (MCO) Yco, ﬁGa :V\Ga é\a >\0) + q)il(l - CY) (é\u)\O)il/Q%\qu
LB (a) = SLPappl (1co, veo, ic, e & Ao) — @711 — ) (Budo) ™ *Fuco,

where T = V72 and 72 is given in (5.10) and (5.11) with pco, Ve, o replaced by their

estimators [ig,Ya, € (also in c3,cq, 5, K3go and Kaco)-

Proof. 1t is easily seen, cf. e.g. Theorem 5.2, that fig,7q, & are consistent estimators of
e, Ya, €. Writing ¢; for ¢; with ugo, vao, €0 replaced by their estimators jig, g, €, it can
be shown (we omit the details, but see Lukocius [5], Chapter 7 for more explanation) that
¢i/c; =T 1 as A\g — oo and moreover, that the ¢; are of the same order of magnitude (that
is of exact order /\(1)/ 2) for i = 3,4,5 and hence 7/7 —F 1 as \y — oo. Application of

Theorem 5.3 therefore yields

(Frco) ™ {SLPappl (pco, Yo, s A, € Ao) — SLPappl (p1co, Yoo, faos Yaos S0s Ao) } v/ EUg
— U
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with U ~ N(0,1). This implies, writing temporarily S = SLPappl (f1co, Yoo, s VG € o)
and noting that SLPapp (kco, Yoo, Haos Veos €0, M) = SLPappl (pico, Yco, tcos Yao, €05 Ao),

P(SLPapp (j1co; Yo Heos Yao: €0, o) < UB ()
=P(SLPappl (pco, Yeo, Hao, Yo, €0, Ao) < S+ @ Y1 — @) (Buro) ™ *Fpuco)

(
(
(
(

=P((Tuco)” {S — SLPappl (pco, Yco, Hao, V6o, €05 Ao) } VEur > =07 (1 - a))
—PU>-0"1-aqa))=1-aq,
thus giving the first result. The other statements are obtained in a similar way:. O]

Remark 6.1. Theorem 6.1 can be applied to G : P(L) with parametrization uy,~y;, (pro-
vided that the fourth moment of L is finite), replacing SLPapp (fico, Yoo, faos Y60, €0, Ao)

and SLPappl (pico, Yco, ia, Ve € o) by SLPapp (pico, Yco, Lo, VLo, €0, Ao) and SLPappl
(pco, Yco, Br, VL, €, \o), respectively, and 72 by the estimated version of (5.12) and (5.13).

Remark 6.2. One may ask why the estimation error is quite substantial. Is it due to
the model construction, or the use of the maximum likelihood estimators, or the structure
of the stop-loss premium, or the use of the G — IG approximation, or is it due to the
further Taylor expansion error? As mentioned before, the estimation error is dominated
by the part of the parameters related to the special claims, because by their nature we do
not have many observations of them. So, that is the main reason. It is well-known that
the more observations, in general the more accurate the estimation. This is so to say an
explanation on the most general level. Going somewhat deeper into it, we may distinguish
two aspects: the function of the parameters, that have to be estimated (in our case the
stop-loss premium) and the accuracy of the estimators of the parameters. If the function
is very flat, errors due to estimation may be not very large. With respect to this aspect,
obviously the structure of the stop-loss premium comes in. The fluctuation of the stop-loss
premium as function of the parameters is expressed by its first order derivatives. These are
studied in Section 4. Obviously, the stop-loss premium, being a function of S, is determined
by the model construction and hence the model construction plays a role. For instance, in
the far more simple model assuming only independent claims, the estimation error will be
much less, because the estimation error is dominated by the part of the parameters related
to the special claims and they are not present in the independence model. The use of

the G — IG approximation and the further Taylor expansion are not important. That the
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G — IG approximation is accurate was already shown in Lukocius [4]; that also the one step
Taylor expansion is accurate is shown in Section 4. The accuracy of the estimators of the
parameters is established in Theorems 5.1 and 5.2. There it has been shown, that indeed
the part of the parameters related to the special claims are dominating. All estimators,
used in the paper are "natural” estimators of the corresponding parameters and therefore
the use of the maximum likelihood estimators seems to be not that important. It is very
nice that the method of maximum likelihood leads to "natural” estimators, but the fact

that indeed we get such "natural” estimators is more important.

Remember that the contribution of estimating ¢, vc and A is very small compared to
that of estimating uqg,vg and €. Therefore, we assume in Theorem 6.1 again uco, Yoo, Ao

to be known. Obviously, in practice one should insert the estimators jic, 7o and ) in the
upper and lower bounds UB («) and LB («).

In Figures 1-3 some examples are presented of the extra amount due to the protection
against estimation and the effect of dependence in these situations. Figures la—3a show

the relative difference between the independent case and the dependence one. Let C' and
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L each have a (different) gamma-distribution. We take yco = 0.4 or 1.2, ugo = 5,10 or
15,760 = 0.5 or 1,69 = 0.03 and A\g = 400. Obviously the independence case is obtained
by taking € = 0. The relative difference is defined by

SLPapp (tico, Yoo, 6o, V60, €0, Ao) — SLPapp (pco, Yeo, Hao, V6o, 0, Ao)
SLPapp (pico, Yoo, fcos V6o, 0, Ao)

_ SLP .
- SLp, 7

where SL P denotes the (approximated) stop-loss premium SLPapp (pico, Yoo, fcos YGos €0, Ao)
under dependence and SLP; = SLPapp (oo, Yeo, haos V6o, 0, Ao), the (approximated) stop-
loss premium under independence. For a fair comparison we take both for the independence

model and the dependence one the same retentions
a= s+ kosy

with £ =0,...,3 and 057 = uc+/A (1 +~2), the standard deviation of S for the indepen-
dence model (see also the Appendix).

Figures 1b-3b show the extra amount due to protection against estimation, also mea-
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sured in a relative way by taking

UB (o) — SLPapp (pco, Yoo, 6o, Y605 €05 o)
SLPClpp (H’C()a Yco, HGos YGos €0, )\0>

with in UB () the estimators fig, 9, € and 7 replaced by g, Ve, €0 and v/72, respectively.
We take v = 0.1 and u = 7. It is easily seen (see also at the end of this section) that both
measures do not depend on .

Note that the order of the displayed cases is slightly different in the figures a and b:
for instance, for pgo = 5 (Figures la, b) the relative difference between dependence and
independence is higher for o9 = 0.4,750 = 0.5 than for vo9 = 1.2,7g0 = 1, while their
order w.r.t. the relative extra amount due to protection against estimation is reversed.

Figures 1-3 affirm that ignoring dependence may lead to very large errors (up to 4294%
in Figure 3). But also the additional step due to protection against estimation is large
(up to 138% in Figure 3). A numerical example may illustrate this. Consider again the
example with true values of the parameters being equal to (uco, Yco, fGo, VG0, €0s Ao) =
(100000, 0.7, 15,0.8,0.03,400). Take k = 1 and hence a = ug + o057 = 4 x 107 + 2561250 =
42561250. If we ignore the dependence structure we get S L Papp(100000, 0.7,15,0.8,0,400) =
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211277. If we take into account the dependence without protection against estimation we
get SLPapp(100000,0.7,15,0.8,0.03,400) = 382006. If we add the protection (taking
fic = pico = 15,96 = g0 = 0.8, = g¢ = 0.03,7 = v/72) we get UB(0.1) = 476596.

The upper and lower bounds UB («) and LB (a) contain the term Tpuco. As this

quantity is the less transparent part of UB («) and LB («), we will discuss it now. It is

seen in the Appendix that

SLPapp (jic, Yo, phas Ve, €, A) = peSLPapp (1,9¢, pias Ya, €, A) -

In view of (5.11) this implies

0
C3 = —SLPCLpp (17VCO7MG07/7G07807 )\0) )
dua

0
4 = a—SLP&pp(1,’YCO,MG0,’YGO>€0, Ao)
Ya

0
C5 = 5O§SLPapp(17/700aMG07'7G07507)\0>'

Therefore, see (4.1), using

SLPappl (MCO77€07NG077G0750a >\0) = SLPapp (MCO/YCO;MGO,’YGO,%, )\0)
= pcoSLPapp (1,vco0, Lco, Va0, €0, Ao) 5

we get

UB () = pco{ SLPappl (1,700, fic, 6+ & Ao) + @71 (1 — a) (Budo) /773,
LB (&) - NCO{SLPCLppl (17 Yco, Z’ZG7//Y\G7 a )\0) - ¢_1(1 - Oé)(gUAo)_l/2?}.

So, we see that indeed p¢g is a kind of dummy parameter.

In the special case with L having a gamma distribution,

Kac = 276 — B g s R = 609G — bug' + ug’g”
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Figure 4: Behavior of 72(uc,ve, pasYa, €N k) as € — 0 with (uc, Vo, e Vo, N) =
(100000, 0.7, 15, 0.8, 400) and k = (a — pg) /os = 1.

and thus 72 reduces to

T = Gl (6.1)
1 1 _
+ QCZ (Mcﬂé — Ve + 5#01 + ucvé)
2 2
+E(1—e){uc(l—e)(1+18) +¢}
— C3C4 GG

+ 2c305 (1 — €) pge:

— a5y (1 —e).

For illustrative purposes we show the behavior of 72 in (6.1) as a function of & (with
(1esve, pa, va, A\, k) = (100000,0.7,15,0.8,400, 1) keeping fixed). Note that cs, ¢y, c5 de-

pend on ¢ in a complicated way. It is clearly seen in Figure 4 that 72 tends to 0 if & — 0.

Appendix. Approximations. Here we present three approximations: the gamma
approximation, the Inverse Gaussian (IG) approximation and the Gamma — Inverse
Gaussian (G — IG) approximation. For the parameter range and distributions under con-

sideration (see Section 2) the G — IG approximation works well and is best among the three
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approximations, see Lukocius [4] for more details. Therefore, the G — IG approximation is
recommended. Note that one has to be careful with extending this conclusion outside the

parameter range or for other distributions than considered here.

Gamma approximation
A shifted gamma distribution is fitted such that the first three cumulants coincide with
those of S. The density of the gamma distribution with parameters o and 3 (for short:
Gamma(a, 7)) is given by
polpaehr

[(e)

We approximate S by T such that T — xq is Gamma(a, 3), where xo, @ and 3 are selected

fa(;a, ) =

such that the first three cumulants of 7" and S coincide. This is achieved by taking

2 \? 2 2
az(—) B = andxozus—ﬂ.
R3s OsRK3s R3s

Noting that a = ug + kog, it leads to the approximation

+ S_NS "
Eg(S — a) = OsEG —k

2 — 2 4 2 2\ — 2 4 2
R e R (A LA (s R )
R3s R3s KRig R3s R3s R3s KR3g K3s

FG(xa Oé,ﬂ) =1 _FG(xa aaﬂ)

where

and where Fg(z;, ) is the distribution function of the gamma distribution with param-

eters o and [3.

I1G approximation
The density of the IG-distribution with parameters a and § (for short: 1G(a, 3)) is given
by

(a = )’

frolasa 9) = a(aro) i enp { LT

For the IG approximation (see Chaubey et al. [3]) we approximate S by 7" such that T'— zg
is IG(«a, 3), where zg, o and [ are selected such that the first three cumulants of 7" and S
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coincide. This is achieved by taking

3\? 3 3
az(—) B = and xg = _ 278
R3s OsRK3s R3s

Noting that a = pug + kog, it leads to the approximation

+ 0o 2

_ —k

Erg(S—a)t = osE <S Hs _ k) = 05/ < exp [—x—ll dz.
s k \/27T (1+ %flfligs)g 2 (1 + gakss)

Using

o) () ()t - e b
— —— | —exp | = — Xp | ————— | ,
dx 1+tx t2 1+ tx o (1 + tz)? L 2(1 +tx) )

d{2e (2)@(96%—% )} x . [ z? ]
—qrexp |5 )0 —= Xp | =5 | -
dz 't t VI+iz or (14t L 2(1+10)]

we obtain

1 —k - = —k
Ere(S - a)* = o (mi)exp(é)@ s | e

R3s R3g

G — IG approximation

The G — IG approximation is a combination of the gamma approximation and the IG
approximation. Each of these approximations only uses the first three cumulants. A
mixing parameter w can be chosen such that the kurtosis of S is fitted as well. The mixing

parameter turns out to be

3K39 — K45 Or4s
w = w(K3s, F15) = T35 5 5 = 10 — —;
3K35 = 3K3g R3g

Hence, the G — IG approximation gives

Eg-1a(S — a)" = w(kss, kus) Ea(S — a)™ + [1 — w(kss, kas)] Era(S —a)*.

Remark A.1. In order that the weight w(kss,k4s) in the G — IG approximation lies

between 0 and 1 we should assume %ﬁg g < Rys < glﬁ% g- Unfortunately, often this condition
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is not satisfied. However, we may use nevertheless the G — IG approximation (with w not
in (0,1)) and simply consider it as an approximation. On the interval in which we are
interested (s > a = pug + kog with 0 < k < 3), often

295 (2 \* 2
ot s+ 22 () L)
R3s R3s Osk3s

+ [1 — w(kszs, kas)] fic (5 ~ st — (i)Q 3 >

) )
R3s R3s OsR3s

behaves like a density. That is, it is positive on this interval. (In principle, in that case we
could even extend it to a density, but note that we should also keep the first four moments
of the approximation and those of S equal to each other and that makes it a little bit nasty;

therefore we do not bother and consider it simply as an approximation.)

Next we present formulas for pg, og, k3g and kys.

Formulas for pg,o0g,k3s and kyg
So far, the approximations are in terms of og, k35 and k4g. It remains to link these quantities
to the basic parameters uc, Ve, i, Yo, € and A. We start with expressions in case of general

C, G (with finite fourth moment), adding for the the sake of completeness also jg:

s = Apc, (A1)
o5/ (Vac) = /1472 — e +e(1 +3)nc.
Ras/(Mie) = 14378 + kaee — e(1+ 32) + 378 (1 + 18 ue + e(1 4 38 + a8 e
Ris/(Mig) = 1+ 678 + draend + (kac + 3)7¢
—e(1+ 692 + drsond + 378)
+e(1+8) (4rsore + 38 e
+ 6e7& (1 + 37& + Kaave ) 1z
+e{1 + 698 + drsene + (Kac + 376 e,

* 3
K3s = K3g/0%,
* 4
Kas = Kyg/0g.

So, SLPapp (pc, Yo, has Vas €, A) is obtained by inserting og, k3s and kys from (Al) into
Eg_16(S —a)T. Tt is easily seen that k3s and k4s do not depend on pc. Moreover,
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Eg_16(S — a)t is of the form ogh(kss, kas) and og is of the form puch*(ve, pa, Ve, €, A)-

Hence, we get

SLPapp (MC)VC?MGaIYGag?/\) = MCSLP(Ipp (17707MGa’7G767 A) :

Assuming additionally Gy : P(L), we obtain

s = Auc, (A2)
o5/ (Vame) = 1+ 72 + (1 + 73,
Kis/ Mud) = 14 308 + Ksond + 3e(1+18) (1 + 77 + e(1+ 397 + karyi )i,
Kis/ (M) = 14 672 + 4kaoe + (Kac + 3)7¢
+ {41+ 398 + raeve) +3(1+192) M1 + 7))
+6e(1 +42) (1 + 397 + maLyi)ug
+ {1+ 677 + 4raryi + (kar + 3)v i,

Kas = Kis/08,
Kus = Kig/0s-
Hence, SLPapp (pc, Yo, 1L, VL, €, A) is obtained by inserting og, k35 and k4g from (A2) into
Ec_1c(S —a)t.
In the particular case that C has a gamma distribution we get k3¢ = 27¢ and kyc = 672,
implying
L+ 378 + kscve = (L+76)(1+29¢) (A3)

and
1+ 67¢ + 4kscve + (kac + 3)76 = (1 +78) (1 + 298) (1 + 3+2). (A4)

When C' has an Inverse Gaussian distribution we get k30 = 37¢ and kye = 1572, implying
1+ 372 +Yekac = 1+ 32 + 374

and
1+ 678 + 472 ksc + Vo (Kac + 3) = 1+ 678 + 1575 + 1572
When C has a lognormal distribution we get k3¢ = v¢(3 + 72) and k4o = Y2(16 +
1592 + 674 +7¢), implying

1+ 372 +7dksc = (1 +12)° (A5)
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and
1+ 69 + 43 ksc + Ve (kac +3) = (1+78)°. (A6)

Remark A.2. Noting that

1+ 37% + nmg = u53EC'3,
14 672 + 4rscrd + (Kac + 3)vE = pg* BC?

and that in case of a gamma distribution we have for j = 1,2, ...
' ' J
pe’ BCT = (1 +ivd),

=1

while for the lognormal distribution we get for j = 1,2, ...
MEJ'ECJ = (1+ 7%)]’(1'*1)/27
the expressions (A3)—(A6) are easily seen.

Obviously, similar expressions hold for L, having a gamma or an Inverse Gaussian

distribution. In particular, when L has a gamma distribution, we obtain
Ksc = 276 — Ba G (A7)
kac = 678 — Oug' + na’ve”

When C and L have a gamma distribution, we obtain by combination of (A1) and (A7)

Ras/(Mie) = (L+72) (1 + 202) + epg (1 +98) (1 + 298)
—e(1+378) + {378 (1 + 1) — & e

and

Kis/ (M) = (1L 4+72) (1 +292) (1 + 372)
— (1 + 672 + 117¢)
+e{(1+98)11v¢ — 6987 + 18 e
+2e {32 (1 +8) (1 + 298) — 782 + 378) e
+e{(14+72) (1 + 298) (1 + 378) Y-
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