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Abstract

This paper is concerned with the statistical inference of seemingly unrelated (SU)

varying-coefficient nonparametric regression models. We propose an estimation for

the unknown coefficient functions, which is an extension of the two-stage procedure

proposed by Linton al. [19] in the longitudinal data framework where they focused

on purely nonparametric regression. We show the resulted estimators are asymptot-

ically normal and more efficient than those based on only the individual regression

equation even when the error covariance matrix is homogeneous. Another focus of

this paper is to extend the generalized likelihood ratio technique developed by Fan,

Zhang and Zhang [7] for testing the goodness of fit of models to the setting of SU

regression. A wild block bootstrap based method is used to compute p-value of the

test. Some simulation studies are given in support of the asymptotics. A real data set

from an ongoing environmental epidemiologic study is used to illustrate the proposed

procedures.
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1 Introduction. Seemingly unrelated (SU) regression models proposed by Zellner [36,

37] have broad applicability in the analysis of behaviors in biology, economics, education

and social science. These models take account of the fact that subtle interactions often

may be present between individual statistical relationships when each of these relationships

is being used to model some aspect of behavior (Srivastava and Giles [29]). Many works

in the literature have contributed to analyze the SU regression models, which include for

example Kakwani [14], Srivastava and Giles [29], Rocke [27], Neudecker and Windmeijer

[23], Mandy and Martins [22], Kurata [16], Hougaard [12], Liu [20], Ng [24], Kalbfleisch

and Prentice [15]), He and Lawless [11], Carroll et al. [3] and so on.

All results mentioned above for SU regression models are established in the setting of

parametric regressions, mainly linear regression. However, in practice the regression func-

tions are usually unknown, so that parametric models may be misspecified and hence be

inadequate to capture the underlying relationships between response variables and their

associated covariates, which may cause large bias of modeling. In order to reduce the

modeling bias, recently Smith and Kohn [28], Wang, Guo and Brown [33] and Welsh and

Yee [34] proposed SU nonparametric regression models. The immediate advantage of the

nonparametric regression models is that no prior information on model structure is as-

sumed. Further, they may provide useful insight for further parametric fitting. However, a

purely nonparametric method is hampered by its serious drawbacks, such as the curse of

dimensionality, difficulty of interpretation, and lack of extrapolation capability. Like other

nonparametric regression model, the SU nonparametric regression model suffers from the

well-known “curse of dimensionality” when the covariates are multidimensional, that is the

optimal rate of convergence decreases with the increase of the covariate’s dimensionality. In

addition, it is hard to describe, interpret, and understand the estimated regression surface

when the dimension is more than two. In order to avoid these shortcomings of purely non-

parametric regression models some authors including Lang, Adebayo and Fahrmeir [17],

Lang et al. [18], Poirer, Koop and Tobias [25] have studied SU semiparametric regres-

sion models and SU structural nonparametric regression models. Specially, Lang, Adebayo

and Fahrmeir [17], Poirer, Koop and Tobias [25] focused on SU partially linear regression

model, and Lang et al. [18] on SU additive nonparametric regression model. Another

important structural nonparametric regression model is the varying-coefficient regression

model proposed by Hastie and Tibshirani [10], which allows appreciable flexibility on the

structure of fitted model without suffering from the “the curse of dimensionality”. The
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varying-coefficient regression model is a useful extension of thresholding models in Tong

[31]. It also appears natural in the longitudinal data analysis where one wishes to explore

the extent to which covariates affect response changing over time. See for example Wu,

Chiang and Hoover [35] and Fan and Zhang [6] for novel applications of the model to longi-

tudinal data. The varying-coefficient models are also useful for analyzing functional types

of data. See Ramsay and Silverman [26] and Brumback and Rice [1] for details. In this

paper we propose the following SU varying-coefficient regression model.

Yij = X1
ijα1j(Uij) + . . . + X

pj

ij αpjj(Uij) + εij for i = 1, . . . , n and j = 1, . . . , J (1)

where Yij’s are responses, αsj(·)’s are unknown functions, Xs
ij and Uij’s are design points,

εij are errors with E(εij) = 0 and E(εij1εij2) = σ2
j1j2

for j, j1, j2 = 1, . . . , J . Further,

E(εi1j1εi2j2) = 0 when i1 6= i2. Our research is motivated by a recent environmental

epidemiology study, the Collaborative Prenatal Projects (CPP) (Gray et al. [9]). The

investigators are interested in assessing the relationship of the women’s PCB exposure and

their children’s hearing of left ear and right ear. One hand, the investigators doubt that

the women’s PCB exposure has the same effect on their children’s left ear hearing and right

ear hearing, and the effect may be nonlinear. On the other hand, they believe that there

exist correlation between left ear hearing and right ear hearing.

We propose a two-stage local polynomial estimation for the unknown coefficient func-

tions in model (1), which is an extension of the procedure developed by Linton et al. [19]

in the longitudinal data framework. Linton et al. [19] focused on the purely nonparametric

regression. We show the resulted estimators are asymptotically normal and more efficient

than those only based on the individual regression equation even when the error covariance

matrix is homogeneous. Therefore, our estimation is also asymptotically more efficient than

the weighted local polynomial estimations proposed by Welsh and Yee [34] in the setting

of purely SU nonparametric regression when the error covariance matrix is homogeneous.

Another important statistical question in fitting model (1) is if there exists a parametric

structure for some αsj(·). This amounts to testing if αsj(·) is in a certain parametric form. A

testing procedure is proposed based on the comparison of the sum of residual squares under

the null and alternative models. This testing procedure is an extension of the generalized

likelihood ratio technique proposed by Fan, Zhang and Zhang [7] to the setting of SU

regression. A wild block bootstrap method is used to find the null distribution of the test

statistic.
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The layout of the remainder of this paper is as follows. In Section 2 we present the

two-stage estimation for model (1). Section 3 establishes the asymptotic properties of the

resulted estimators. A wild block bootstrap based test is proposed in Section 4. Some

simulation studies are conducted in Section 5. A real data from an ongoing environmental

epidemiologic study is analyzed in Section 6. Section 7 concludes. The proof of the main

results are collected in Appendix.

2 Two-stage estimation. Throughout this paper we will assume σ2
j1j2

’s are known.

If σ2
j1j2

’s are unknown we can estimate them root-n consistently, which is faster than the

rates available in nonparametric regression. Therefore, for purposes of asymptotic theory

we may assume without loss of generality that σ2
j1j2

’s are known. The root-n consistent

estimates of σ2
j1j2

can be obtained by computing the residuals which are based on only

the individual regression equation. If the errors of model (1) are heterogeneous and their

covariance matrix is a smoothing function of covariate U , we can estimate it by applying

kernel smoothing to the residuals. We believe the subsequent results still hold although

the kernel smoothing covariance matrix estimator is not root-n consistent.

The two-stage local polynomial procedure consists of two steps.

1. First, based on the individual regression equation we fit the functions αj(·) =

(α1j(·), . . . , αpjj(·))T using local linear method.

2. At the second step, we construct a linear transformation of (YT
1 , . . . ,YT

J )T that has

the same mean as (YT
1 , . . . ,YT

J )T and diagonal covariance matrix, and then apply the local

linear method to this transformation where Yj = (Y1j, . . . , Ynj)T .

This two-stage procedure was proposed by Linton et al. [19] in the longitudinal data

framework. They focused on the purely nonparametric regression. We will show that this

two-stage procedure works even for SU structural nonparametric regression models such as

the SU varying-coefficient regression model.

2.1 First-stage estimation. In the first stage, based on the individual regression

equation we estimate the unknown coefficient functions of model (1) by local polynomial

(linear) smoother. According to Fan and Gijbels [5], the local polynomial smoother has

attractive properties. For example, it reduces the bias of the Nadaraya-Watson estimators

and the variance of the Gasser-Müller estimator, and adapts automatically to the boundary
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of design points.

For fixed j, suppose that (Yij,XT
ij, Uij)

n
i=1 is a sample from model (1.1), namely they

satisfy

Yij = XT
ijαj(Uij) + εij, i = 1, . . . , n (2)

where Xij = (X1
ij, . . . , X

pj

ij )T and αj(·) = (α1j(·), . . . , αpjj(·))T . Now, apply a local linear

regression technique to estimate the coefficient functions {αsj(·), s = 1, . . . , pj} in model

(2) as Cai, Fan and Yao [2]. For U in a small neighborhood of u, one can approximate

αsj(U) locally by a linear function

αsj(U) ≈ αsj(u) + α′sj(u)(U − u) ≡ asj + bsj(U − u), s = 1, . . . , pj

where α′sj(u) = ∂αsj(u)/∂u. This leads to the following weighted local least-squares prob-

lem: find {(asj, bsj), s = 1, . . . , pj} to minimize

n∑
i=1

[
Yij −

pj∑
s=1

{asj + bsj(Uij − u)}Xs
ij

]2

Kh(Uij − u), (3)

where K(·) is a kernel function, h is a bandwidth and Kh(·) = K(·/h)/h. The solution to

problem (3) is given by
{

â1j(u), . . . , âpjj(u), hb̂1j(u), . . . , hb̂pjj(u)
}

T

=
(
DT

juWjuDju

)−1
DT

juWjuYj. (4)

where

Dju =




XT
1j

U1j−u

h
XT

1j
...

...

XT
nj

Unj−u

h
XT

nj


 , and Wju = diag(Kh(U1j − u), . . . , Kh(Unj − u)).

Thus, an estimator for Ψj(u) = (α1j(u), . . . , αpjj(u), α′1j(u), . . . , α′pjj(u)) has the form

Ψ̂j(u) = H−1
(
DT

juWjuDju

)−1
DT

juWjuYj.

where H = diag(1, h)⊗ Ipj
, Ipj

is a pj×pj identity matrix and ⊗ is the Kronecker product.

Especially, an estimator of αsj(u) is

α̂sj(u) = eT
s,2pj

H−1
(
DT

juWjuDju

)−1
DT

juWjuYj,

where es,2pj
is a 2pj-column vector with 1 in the sth position and zeros elsewhere. The

estimator Ψ̂j(·) or α̂j(·) = (α̂1j(·), . . . , α̂pjj(·))T is the well-known local linear estimator.

Since the correlation between the equations is not considered in the estimators Ψ̂j(u) and

α̂j(u) one can not expect that they are asymptotically efficient. In the following, we will

propose an improved estimation.
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2.2 Two-stage estimation. Obviously, the correlation of the equations which com-

prise the structure of the model (1), and the form of the associated disturbance variance

covariance matrix, introduce additional information over the available when the individual

equations are considered separately. This suggests that treating model (1) as a collection

of separate relationships will be suboptimal when drawing inferences about the model’s

unknown coefficient functions. Indeed, as we shall see, in general the sharpness of these

inferences may be improved by taking into account of the correlation inherent in model

(1), rather than ignoring it. Recognizing this point motivates us to consider the two-stage

nonparametric estimation.

Let Σ = (σ2
j1j2

)J
j1,j2=1 and Φ =

{
(diag(Σ− 1

2 ))−1(Σ− 1
2 − diag(Σ− 1

2 ))
}
⊗ In where In is

an n× n identity matrix. For any function (m11(·), . . . , mp11(·), . . . , mpJJ(·))T , define




Z1(m11, . . . ,mp11, . . . , mpJJ)
...

ZJ(m11, . . . ,mp11, . . . , mpJJ)


 =




Y1

...

YJ


 + Φ




Y1 −G1

...

YJ −GJ




with Gj = (XT
1jmj(U1j), . . . ,XT

njmj(Unj))T and mj(·) = (m1j(·), . . . , mpjj(·))T . Note that




Z1(α11, . . . , αp11, . . . , αpJJ)
...

ZJ(α11, . . . , αp11, . . . , αpJJ)


 =




M1

...

MJ


 + Φ




ε1

...

εJ




and

Cov





Φ




ε1

...

εJ








= (diag(Σ− 1
2 ))−2 ⊗ In

where Mj = (XT
1jαj(U1j), . . . ,XT

njαj(Unj))T and εj = (ε1j, . . . , εnj)T .

This implies that Zj1(α11, . . . , αp11, . . . , αpJJ) and Zj2(α11, . . . , αp11, . . . , αpJJ) are un-

correlated for j1 6= j2. Further, if we denote

Ω = (ωj1j2)
J
j1,j2=1 = {diag(Σ− 1

2 )}−1(Σ− 1
2 − diag(Σ− 1

2 ))

we have

Zj(α11, . . . , αp11, . . . , αpJJ) = Yj +
J∑

j1=1

ωjj1(Yj1 −Mj1).
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Thus, the two-stage local linear estimator of Ψj(u) is

Ψ̂TS
j (u) = H∗−1

(
D∗T

juW∗
juD

∗
ju

)−1
D∗T

juW∗
ju

{
Yj +

J∑
j1=1

ωjj1(Yj1 −Mj1)

}
.

where H∗,D∗
ju and W∗

ju have the same definitions as H,Dju and Wju except that h is

replaced by h∗. However, Mj’s of the right side of Ψ̂TS
j (u) are unknown. Therefore, we

replace Mj by the estimator from the first stage and it results in the following feasible

estimator

Ψ̂TS
j (u) = H∗−1

(
D∗T

juW∗
juD

∗
ju

)−1
D∗T

juW∗
ju

{
Yj +

J∑
j1=1

ωjj1(Yj1 − M̂j1)

}
.

where M̂j = (XT
1jα̂j(U1j), . . . ,XT

njα̂j(Unj))T . Especially, a two-stage local linear estimator

of αsj(u) is

α̂TS
sj (u) = eT

s,2pj
H∗−1

(
D∗T

ju W∗
juDju

)−1
DT

juW
∗
ju

{
Yj +

J∑
j1=1

ωjj1(Yj1 − M̂j1)

}
.

Remark 2.1. The proposed two-stage estimation is easy to be extended to the case of

the error covariance matrix being heterogeneous. Let Cov(ε∗i ) = Σi = (σ2
ij1j2

)J
j1,j2

and

(ωij1j2)
J
j1,j2=1 = {diag(Σ− 1

2
i )(Σ

− 1
2

i − diag(Σ
− 1

2
i ))} where ε∗i = (εi1, . . . , εiJ)T . Then the feasi-

ble two-stage local linear estimators for Ψj(·) and αsj(·) are, respectively

Ψ̂TS
j (u) = H∗−1

(
D∗T

ju W∗
juD

∗
ju

)−1
D∗T

juW∗
ju

{
Yj +

J∑
j1=1

diag(ω1jj1 , . . . , ωnjj1)(Yj1 − M̂j1)

}
.

and

α̂TS
sj (u) = eT

s,2pj
H∗−1

(
D∗T

juW∗
juDju

)−1
DT

juW
∗
ju

{
Yj +

J∑
j1=1

diag(ω1jj1 , . . . , ωnjj1)(Yj1 − M̂j1)

}
.

In the next section, we will show the two-stage estimators are asymptotically normal

and more efficient than those based on only individual equation.

3 Asymptotic properties of two-stage estimators. In order to establish the asymp-

totic properties of Ψ̂TS
j (·) and α̂TS

sj (u) we make the following assumptions. These assump-

tions, while look a little bit lengthy, are actually quite mild and can be easily satisfied.
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Assumption 1. For fixed j, (XT
ij, Uij, εij)T are i.i.d random vectors. U1j has a bounded

support Uj and its density function fj(·) is Lipschitz continuous and bounded away from

0 on its support. In addition, there exist a constant c such that fj,j1(uj, uj1) < c where

fj,j1(·, ·) is the joint density function of Uij and Uij1.

Assumption 2. The p× p matrix Γj(u) = E(X1jXT
1j|U1j = u) is positive definite for each

u ∈ Uj.

Assumption 3. There is an s > 2 such that Eε2s
1j < ∞, E||X1j||2s < ∞ for j = 1, . . . , J .

Assumption 4. {αsj(·), s = 1, . . . , pj, j = 1, . . . , J} have the continuous second derivatives

in u ∈ Uj.

Assumption 5. The function K(·) is a density function with compact support and the

bandwidths h and h∗ satisfy nh8 → 0, nh2/(log n)2 → ∞, nh∗8 → 0, nh∗2/(log n)2 → ∞
and h∗/h → 0 as n →∞.

Remark 3.1. Throughout this paper, we assume that αj(·)’s have the same smoothness

for different j. This is just for simplicity. Actually, the proposed two-stage local linear

estimation can easily adopt the case that αj’s have different smoothness. In addition, for

fixed j, when αsj(·)’s have the different smoothness for different s, the estimation developed

by Fan and Zhang [6] may be useful here.

Let

µj =

∫ ∞

−∞
ujK(u)du, νj =

∫ ∞

−∞
ujK2(u)du.

The following theorem shows that Ψ̂TS
j (·) is asymptotically normal.

Theorem 3.1. Suppose that Assumptions 1 to 5 hold. Then it holds that

√
nh∗

[
H∗

{
Ψ̂TS

j (u)−Ψj(u)
}
− h∗2

2

1

µ2 − µ2
1

(
(µ2 − µ1µ3)α

′′
j (u)

(µ3 − µ1µ2)α
′′
j (u)

)]
D−→ N(0,ΣTS

j )

as n → ∞, where α′′
j (u) = (α′′1j(u), . . . , α′′pjj(u))T with α′′sj(u) = ∂2αsj(u)/∂u2, “

D−→”

denotes convergence in distribution, and

ΣTS
j =

((diag(Σ− 1
2 ))−2)jj

fj(u)
Γ−1

j (u)

⊗ 1

(µ2 − µ2
1)

2

(
µ2

2ν0 − 2µ1µ2ν1 + µ2
1ν2 (µ2

1 + µ2)ν1 − µ1µ2ν0 − µ1ν2

(µ2
1 + µ2)ν1 − µ1µ2ν0 − µ1ν2 ν2 − µ1(2ν1 + µ1ν0)

)
.
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Corollary 1 Under conditions of Theorem 3.1, we have

√
nh∗

{
α̂TS

j (u)−αj(u)− h∗2

2

µ2
2 − µ1µ3

µ2 − µ2
1

α
′′
j (u)

}
D−→ N(0,ΣTS

αj
) as n →∞

where α̂TS
j (u) = (α̂TS

1j (u), . . . , α̂TS
pjj(u))T , αj(u) = (α1j(u), . . . , αpjj(u))T and

ΣTS
αj

=
((diag(Σ− 1

2 ))−2)jj(c
2
0ν0 + 2c0c1ν1 + c2

1ν2)

fj(u)
Γ−1

j (u)

with c0 = µ2/(µ2 − µ2
1) and c1 = −µ1/(µ2 − µ2

1).

Remark 3.2. It is easy to see that under Assumptions 1 to 5 we have

√
nh

{
α̂j(u)−αj(u)− h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

α
′′
j (u)

}
D−→ N(0,Σαj

) as n →∞

where α̂j(u) = (α̂1j(u), . . . , α̂pjj(u))T and

Σαj
=

σ2
jj(c

2
0ν0 + 2c0c1ν1 + c2

1ν2)

fj(u)
Γ−1

j (u)

By the same argument as in Appendix 5.2 of Linton et al. [19] we can show that

((diag(Σ− 1
2 ))−2)jj ≤ σ2

jj.

Therefore, the two-stage estimator α̂TS
j (·) is asymptotically more efficient than those based

on only the individual regression equation.

In addition, when the error covariance matrix is heterogeneous we have

√
nh∗

{
α̂TS

j (u)−αj(u)− h∗2

2

µ2
2 − µ1µ3

µ2 − µ2
1

α
′′
j (u)

}
D−→ N(0,ΣTS∗

αj
) as n →∞

and √
nh

{
α̂j(u)−αj(u)− h2

2

µ2
2 − µ1µ3

µ2 − µ2
1

α
′′
j (u)

}
D−→ N(0,Σ∗

αj
) as n →∞

where

ΣTS∗
αj

=
{limn→∞ n−1

∑n
i=1((diag(Σ

− 1
2

i ))−2)jj}(c2
0ν0 + 2c0c1ν1 + c2

1ν2)

fj(u)
Γ−1

j (u)

and

Σ∗
αj

=
{limn→∞ n−1

∑n
i=1 σ2

ijj}(c2
0ν0 + 2c0c1ν1 + c2

1ν2)

fj(u)
Γ−1

j (u)
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Obviously, limn→∞ n−1
∑n

i=1((diag(Σ
− 1

2
i ))−2)jj ≤ limn→∞ n−1

∑n
i=1 σ2

ijj. Therefore, when

the error covariance matrix is heterogeneous the two-stage local linear estimator α̂TS
j (·) is

still asymptotically more efficient than those based on only the individual regression equa-

tion.

In order to apply Theorem 3.1 or Corollary 1 to make statistical inference for Ψ̂TS
j (·)

or α̂TS
j (·), a consistent estimator of ΣTS

j or ΣTS
αj

is needed. It is easy to see that νj and

µj are known constants. In addition, we can construct root-n consistent estimators of σ2
j1j2

based on estimated residuals. Therefore, in order to construct the consistent estimators for

ΣTS
j and ΣTS

αj
we just provide a consistent estimator for Γj(u)fj(u). Define

Γ̂j(u) =
1

nh∗

n∑
i=1

Kh∗(Uij − u)XijXT
ij .

The following theorem shows that Γ̂j(u) is a consistent estimator of Γj(u)fj(u).

Theorem 3.2. Suppose that Assumptions 1,2 and 5 hold. Then it holds that

Γ̂j(u) →p Γj(u)fj(u) as n →∞.

4 Wild block bootstrap based goodness of fit test. To test whether model (1)

holds with a specified parametric form for the varying-coefficient functions such as an SU

linear regression model, we extend the generalized likelihood technique in Fan, Zhang and

Zhang [7] to the current setting. Applying the the generalized likelihood ratio technique to

test the goodness of fit of non-SU varying-coefficient regressions is considered by Cai, Fan

and Yao [2]. The null hypothesis is

H0 : αsj(u) = asj(u, θsj), s = 1, . . . , pj, j = 1, . . . , J, (5)

where asj(·,θsj) is a given family of functions indexed by an unknown parameter vector θsj.

Let θ̂sj be a consistent estimator of θsj and denote âj(Uij) = (â1j(Uij, θ̂1j), . . . , âpjj(Uij, θ̂pjj))T .

The residual sum of squares under the null hypothesis is

RSS0 = (nJ)−1

J∑
j=1

n∑
i=1

(Yij −XT
ijâj(Uij))

2,
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and the residual sum of squares corresponding to model (1.1) is

RSS1 = (nJ)−1

J∑
j=1

n∑
i=1

(Yij −XT
ijα̂

TS
j (Uij))

2.

Our test statistic is defined as

Qn = (RSS0 − RSS1)/RSS1 = RSS0/RSS1 − 1,

for which we have the following theorem.

Theorem 4.1. Suppose that Assumptions 1 to 5 hold. Then under H0, Qn → 0 in

probability as n → ∞. Otherwise, if infθsj

{∫
Uj

(αsj(u)− asj(u, θsj))
2du

}2

> 0 for some

s = 1, . . . , pj, j = 1, . . . , p, then there exists a constant δ > 0 such that Qn > δ with

probability approaching one as n →∞.

Theorem 4.1 suggests that we should reject the null hypothesis (5) for large values of

Qn. However, the distribution of Qn is hard to obtain. Inspired by Stute, Gonzá lez and

Presedo [30], Godfrey and Tremayne [8] and Ioannidis and Peel [13] among others who

have successfully used the wild bootstrap method to calculate the p-values of their tests

and note that there exists correlation between εij1 and εij2 even when j1 6= j2, we develop

a wild block bootstrap procedure to compute the p-value of Qn.

Follow the steps below to implement our goodness-of-fit test:

1. Fit the SU varying-coefficient regression model (1) as described in Section 2 and calculate

Qn and the estimated pseudo residuals {ε̂ij}n
i=1, where

ε̂ij = Yij −XT
ijα̂

TS
j (Uij), i = 1, . . . , n, j = 1, . . . , J.

2. Generate a sequence of i.i.d. random variables {τi}n
i=1 from a symmetric distribution

function F (·) such that Eτ1 = 0, Eτ 2
1 = 1 and E|τ1|3 < ∞. We stress that F (·) is chosen

independently of the given regression model.

3. Set Y ∗
ij = XT

ijα̂
TS
j (Uij) + ε̂ijτi, i = 1, . . . , n and calculate the bootstrap test statistic Q∗

n

based on the sample {Y ∗
ij ,X

T
ij, Uij, i = 1, . . . , n, j = 1, . . . , J}.

4. Repeat Step 2 and Step 3 a large number of times to generate a bootstrap distribution

of Q∗
n.

5. Reject the null hypothesis H0 at level α if Qn is greater than the 100(1− α)% quantile

of the bootstrap distribution of Q∗
n.

The p-value of our test is simply the relative frequency of the event {Q∗
n ≥ Qn} in the

replications of the bootstrap sampling.
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5 Some simulation studies. In this section we carry out some simulation studies

to demonstrate the finite sample performance of the proposed procedures. The data are

generated from the following SU varying-coefficient nonparametric regression model

yij = xijαj(uij) + εij, i = 1, . . . , n, j = 1, 2,

where ui1 ∼ U(0, 1), ui2 ∼ U(0, 1), xi1 ∼ N(1, 0.252), xi2 ∼ N(1, 0.252), α1(ui1) =

2 sin(2πui1), α2(ui2) = 2 cos(3πui2), εi1 ∼ N(0, 1), εi2 ∼ N(0, 1) and E(εi1εi2) = σ2
12.

We take σ2
11 = 0.5 and 0.9 with respect to different degrees of correlation.

Samples of size n = 50, 100, 200 and 400 are drawn repeatedly. In each case the number

of simulated realizations is 1, 000. We take the Gaussian kernel.

The estimators α̂1(·), α̂2(·), and α̂TS
1 (·), α̂TS

2 (·) are assessed via the Square-Root of

Averaged Squared Errors (RASE):

RASE =

[
n−1

n∑
i=1

{α̃1(ui1)− α1(ui1)}2

] 1
2

+

[
n−1

n∑
i=1

{α̃2(ui2)− α̃2(ui2)}2

] 1
2

.

where α̃j(·) is an estimator of αj(·). The results are summarized in the following Table 1.

Table 1: The finite sample performance of the estimators for the coefficient functions.

n = 50 n = 100 n = 200 n=400

σ2
12 = 0.5 RASE1 sm 0.8601 0.6685 0.4706 0.3623

std 0.1345 0.0945 0.0945 0.0480
RASE2 sm 0.7999 0.6199 0.4320 0.3388

std 0.1233 0.0857 0.0590 0.0363

σ2
12 = 0.9 RASE1 sm 0.8537 0.6147 0.4668 0.3645

std 0.1463 0.0919 0.0655 0.0405
RASE2 sm 0.6092 0.4226 0.3032 0.0405

std 0.1161 0.0818 0.0580 0.0308

Note: RASE1 means the RASE of the estimators which only based on individual equations and RASE2

means the RASE of the proposed estimators.

From Table 1 we can see that the two-stage estimators perform much better than the

one based on only the individual equation, especially when σ2
12 is big. For example, when

n = 100 and σ2
12 = 0.5 the RASE of α̂1(·) and α̂2(·) is 0.6685, and that of α̂TS

1 (·) and α̂TS
2 (·)
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Figure 1: σ2
12 = 0.5. Plots (a) and (b) are the confidence bands for α1(·). Plots (c) and (d) are the

confidence bands for α2(·). Plots (a) and (c) are the 95% Monte Carlo simulation confidence bands. Plots
(b) and (d) are the 95% asymptotic confidence bands. Dash-dotted curves: the confidence bands based on
the usual local linear estimator. Dashed curves: the confidence bands based on two-stage estimators. Solid
curves: the true curves.

is 0.6199. However, when n = 100 and σ2
12 = 0.9 the RASE of α̂1(·) and α̂2(·) is 0.6147,

and that of α̂TS
1 (·) and α̂TS

2 (·) is 0.4226.

We also plot the 2.5% and 97.5% quantiles from the Monte Carlo (MC) simulation and

the 95% asymptotic pointwise confidence bands using the asymptotic results established in

Section 3 in Figures 1 and 2. From them we can see that the asymptotic confidence band

is very close to the quantile confidence band.

To demonstrate the power of the proposed bootstrap test, we consider the following

null hypothesis: H0 : αj(u) = θj, for all j = 1, 2, namely an SU linear regression model,

against the alternative H1 : αj(u) 6= θj, for at least one j.

The power function is evaluated under a sequence of the alternative models indexed by



72 You, Zhou and Zhou

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
a

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
b

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
c

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3
d

Figure 2: σ2
12 = 0.9. Plots (a) and (b) are the confidence bands for α1(·). Plots (c) and (d) are the

confidence bands for α2(·). Plots (a) and (c) are the 95% Monte Carlo simulation confidence bands. Plots
(b) and (d) are the 95% asymptotic confidence bands. Dash-dotted curves: the confidence bands based on
the usual local linear estimator. Dashed curves: the confidence bands based on two-stage estimators. Solid
curves: the true curves.

c:

H1 : αj(u) = ᾱ0
j + c(α0

j (u)− ᾱj), j = 1, 2, 0 ≤ c ≤ 1

where α0
1(u) = 2 sin(2πu), α0

2(u) = 2 cos(3πu) and ᾱj is the average height of α0
j (u). We

apply the goodness of fit test described in last section in a simulation with sample size

being 500. We take τi = −(
√

5−1)/2 with probability (
√

5+1)/(2
√

5) and τi = (
√

5+1)/2

with probability 1 − (
√

5 + 1)/(2
√

5). For each realization, we repeat bootstrap sampling

500 samples. Figure 3 plots the simulated power function against c.

When the null hypothesis holds the sizes are very significantly close to the nominal level

5%. This demonstrates that bootstrap estimate of the null distribution is approximately

correct. Meanwhile, from Figure 3, the power function shows that our test is indeed
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Figure 3: The power curves of testing the goodness of fit of model in which n = 100, σ2
12 = 0.5.

powerful.

6 An application. We apply the proposed method to analyze a data set from the

Collaborative Perinatal Project (CPP). CPP is a prospectively designed study to provide

precise data for studies of a wide variety of neurological outcome and birth detects (Gray

et al. [9]. Subjects were enrolled through 12 university affiliated medical clinics, with

the centers contributing unequal numbers of subjects. In all, 55,908 pregnancies were

registered, representing the experience of about 44,000 women. The children born during

the study were followed for various outcomes for up to 8 years. One of the hypotheses is

that the PCB levels are related to performance on the hearing level for children at 7 years

of age, taking children’s gender into account. The PCBs were measured by analyzing the

third trimester blood serum specimens that have been preserved from mothers in the CPP

study. We use the average of hearing level at 1,000, 2,000 and 4,000 for left and right ear of

each child at 7 years of age as the outcome variable and the PCB, gender as the exposure

variables. The following model is used.

Left ear hearing = α11(PCB) + Gender× α12(PCB) + εL

Right ear hearing = α21(PCB) + Gender× α22(PCB) + εR
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Figure 4: Application to CPP data. Plots (a) and (b) are for left ear. Plots (c) and (d) are for right ear.
Plots (a) and (c) are estimators of intercept coefficient function. Plots (b) and (d) are estimators of the
gender coefficient function. Dashed curves: two-stage estimators. Solid curves: local linear estimator.

For left ear fitting the error variance is 14.5803, for right ear fitting the error variance

is 20.7763 and the correlation is 0.8593. Obviously, compared with error variances, the

correlation is strong. By the test, we reject the hypothesis: αsj(·) = constant for s =

1, 2 and j = 1, 2. The local linear estimators which neglect the correlation between the

equations and the proposed two-stage estimators of α11(·), α12(·), and α21(·), α22(·), are

shown in Figure 4 and the pointwise standard deviations of these estimators are shown in

Figure 5.

From these figures we can see the PCB have the same effecting pattern on left and

right ears. However, the degrees of effecting are different. In addition, we can see that

the two-stage estimator has smaller pointwise error variance than the usual local linear

estimator.
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Figure 5: Application to CPP data. Plots (a) and (b) are for left ear. Plots (c) and (d) are for right
ear. Plots (a) and (c) are the pointwise error variances of the estimators for intercept coefficient function.
Plots (b) and (d) are the pointwise error variances of estimators for the gender coefficient function. Dashed
curves: the pointwise error variances of the two-stage estimators. Solid curves: the pointwise error variances
of local linear estimator.

7 Concluding remarks. In this paper, we have investigated the estimating problem

of seemingly unrelated varying-coefficient nonparametric regression models. We proposed

a two-stage local polynomial procedure to estimate the unknown coefficient functions. It

was shown that the resulted estimators are asymptotically normal and more efficient than

those based on only the individual regression equation when the error covariance matrix is

homogeneous or heterogeneous. A statistic is also proposed to test the goodness of fit of

models.

For our results, we need an assumption that εi1j1 and εi2j2 are independent for i1 6= i2.

This assumption may be not true sometimes. For instances, crop yields from units in

the same plot observed time points would generally be correlated at each time point as
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well exhibiting time correlation. Responses of individuals belonging to to the same group

tend to be correlated within the group as well as along time axis. In this situations, it

would be desirable to consider a seemingly unrelated varying-coefficient regression model

which permits correlation within each block or group and also incorporates dependence

between the observation vectors at different time points. For this setting, how to improve

the ordinary local polynomial estimation is still an open problem.

8 Appendix: proofs of main results. In order to prove the main results we first

present a lemma.

Lemma 8.1. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d random vectors, where the Yi’s are scalar

random variables. Further assume that E|Yi|4 < ∞ and supx

∫ |y|4f(x, y)dy < ∞, where f

denotes the joint density of (X, Y ). Let K be a bounded positive function with a bounded

support, and satisfies Lipschitz’s condition. Then if nh8 → 0 and nh2/(log n)2 → ∞, it

holds that

sup
x

∣∣∣∣∣
1

n

n∑
i=1

[Kh(Xi −X)Yi − E{Kh(Xi −X)Yi}]
∣∣∣∣∣ = Op

({
log(1/h)

nh

} 1
2

)
.

The proof of Lemma 8.1 follows immediately from the result of Mack and Silverman

[21].

Proof of Theorem 3.1 According to the definition of Ψ̂TS
j (u) it holds that

H∗Ψ̂TS
j (u) = (D∗T

juW∗
juD

∗
ju)

−1D∗T
juW∗

ju(εj +
J∑

j1=1

ωjj1εj1)

+(D∗T
ju W∗

juD
∗
ju)

−1D∗T
juW∗

ju

J∑
j1=1

ωjj1(M̂j −Mj)

+(D∗T
ju W∗

juD
∗
ju)

−1D∗T
juW∗

juMj = J1 + J2 + J3, say

where M̂j = (XT
1jα̂j(U1j), . . . ,XT

njα̂j(Unj))T and Mj = (XT
1jαj(U1j), . . . ,XT

njαj(Unj))T .

For J2, we have

J2 = (D∗T
ju W∗

juD
∗
ju)

−1

( ∑n
i=1 Kh∗(Uij − u)Xij

∑J
j1=1 ωjj1X

T
ij1

(α̂j1(Uij1)−αj1(Uij1))∑n
i=1

Uij−u

h∗ Kh∗(Uij − u)Xij

∑J
j1=1 ωjj1X

T
ij1

(α̂j1(Uij1)−αj1(Uij1))

)
.
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Let Sj(u) =

(
Γj(u) µ1Γj(u)

µ1Γj(u) µ2Γj(u)

)
. Then by Cai, Fan and Yao [2] it holds that

α̂j(Uij)−αj(Uij)

= (Ip,0p×p)fj(Uij) {Sj(Uij)}−1

(
1
n

∑n
i1=1 Xi1jKh(Ui1j − Uij)εij

1
n

∑n
i1=1 Xi1j

(
Ui1j−Uij

h

)
Kh(Ui1j − Uij)εij

)

+
h2

2
{Sj(Uij)}−1

(
µ2Γj(Uij)

µ3Γj(Uij)

)
α
′′
j (Uij) + op(h

2)

=
µ2 {Γj(Uij)}−1

fj(Uij)(µ2 − µ2
1)

1

n

n∑
i1=1

Xi1jKh(Ui1j − Uij)εi

− µ1 {Γj(Uij)}−1

fj(Uij)(µ2 − µ2
1)

1

n

n∑
i1=1

Xi1j

(
Ui1j − Uij

h

)
Kh(Ui1j − Uij)εi

+
h2

2

µ2 − µ1µ3

µ2 − µ2
1

α
′′
j (Uij) + op(h

2) = I1 + I2 + I3 + o(h2), say.

Denote Γ∗(Uij) = [µ2 {Γj(Uij)}−1]/{fj(Uij)(µ2 − µ2
1)}. We have

1

n

n∑
i=1

Kh∗(Uij − u)Xij

J∑
j1=1

ωjj1X
T
ij1

I1

=
1

n

J∑
j1=1

ωjj1

n∑
i1=1

εi1j1

1

n

n∑
i=1

Kh∗(Uij − u)XijXT
ij1

Γ∗(Uij1)Xi1j1Kh(Ui1j1 − Uij1)

=
1

n2

J∑
j1=1

ωjj1

n∑
i1=1

εi1j1Kh∗(Ui1j − u)Xi1jXT
i1j1

Γ∗(Ui1j1)Xi1j1Kh(0)

+
1

n

J∑
j1=1

ωjj1

n∑
i1=1

εi1j1

1

n

n∑

i6=i1

Kh∗(Uij − u)XijXT
ij1

Γ∗(Uij1)Xi1j1Kh(Ui1j1 − Uij1)

= I4 + I5, say.

By Lemma 8.1 it is easy to see that I4 = op(n
−1/2). On the other hand, obviously εi1j1 and

n−1
∑n

i=1 Kh∗(Uij − u)XijXT
ij1

Γ∗(Uij1)Xi1j1Kh(Ui1j1 − Uij1) are independent. Moreover, it

holds that

E

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑
i=1

Kh∗(Uij − u)XijXT
ij1

Γ∗(Uij1)Xi1j1Kh(Ui1j1 − Uij1)

∣∣∣∣∣

∣∣∣∣∣

≤
∫ ∫ ∫

fjj1(u1, u2)fj1(u3)E
(∣∣∣∣X1jXT

1j1
Γ∗(uj1)

∣∣∣∣ |U1j = u1, U1j1 = u2

)
E(||X1j1|| |U1j1 = u3)

·Kh∗(u1 − u)Kh(u2 − u3)du1du2du3 = O(1)
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Therefore,

1

n

n∑
i=1

Kh∗(Uij − u)Xij

J∑
j1=1

ωjj1X
T
ij1

I1 = Op(n
− 1

2 ).

Moreover, combining Lemma 8.1 it is easy to see that

1

n

n∑
i=1

Kh∗(Uij − u)Xij

J∑
j1=1

ωjj1X
T
ij1

(I2 + I3 + op(h
2)) = Op(h

2).

This implies that

1

n

n∑
i=1

Kh∗(Uij − u)Xij

J∑
j1=1

ωjj1X
T
ij1

(α̂j1(Uij1)−αj1(Uij1)) = op(h
∗2 + 1/

√
nh∗).

By the same argument, we can show that

1

n

n∑
i=1

Uij − u

h∗
Kh∗(Uij − u)Xij

J∑
j1=1

ωjj1(α̂j1(Uij1)−αj1(Uij1)) = op(h
∗2 + 1/

√
nh∗).

Note that

D∗T
ju W∗

juD
∗
ju =




∑n
i=1 Kh∗(Uij − u)

∑n
i=1

(
Uij−u

h∗

)
Kh∗(Uij − u)

∑n
i=1

(
Uij−u

h∗

)
Kh∗(Uij − u)

∑n
i=1

(
Uij−u

h∗

)2

Kh∗(Uij − u)


 .

Each element of the above matrix is in the form of kernel regression. By Lemma 8.1 it

holds that

1

n
D∗T

juW∗
juD

∗
ju = fj(u)Γj(u)⊗

(
µ0 µ1

µ1 µ2

)
·Op

[
1 +

{
log(1/h∗)

nh∗

} 1
2

]
.

Therefore, we have J2 = op{h∗2 + 1/
√

nh∗}.
Since the coefficient functions αsj(u) (s = 1, 2, · · · , pj) are smooth in the neighborhood

of |Uij − u| < h, by Taylor’s expansion,

XT
ijαj(Uij) = XT

ijαj(u) + (Uij − u)XT
ijα

′
j(u) +

h∗2

2

(
Uij − u

h∗

)2

XT
ijα

′′
j (u) + o(h∗2)

where α′
j(u) and α

′′
j (u) are the vectors consisting of the first and the second derivatives of

the functions αsj(·). Thus, we have

J3 =

(
αj(u)

h∗α′
j(u)

)
+

h∗2

2

(
D∗T

ju W∗
juD

∗
ju

)−1
D∗T

ju W∗
juAjuXT

j α
′′
j (u) + o(h∗2)
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where

Aju = diag

{(
U1j − u

h∗

)2

· · · ,

(
Unj − u

h∗

)2
}

.

By Lemma 8.1

1

n
D∗T

juW∗
uAjuXT

j α
′′
j (u) = fj(u)Γj(u)α′′

j (u)⊗ [µ2, µ3]
T{1 + op(1)}.

By applying the fact

(A + aB)−1 = A−1 − aA−1BA−1 + O(a2) as a → 0

to
(
D∗T

ju W∗
juD

∗
ju

)−1
we have

h∗2

2

(
D∗T

ju W∗
juD

∗
ju

)−1
D∗T

juW∗
juAjuXT

j α
′′
j (u) =

1

µ2 − µ2
1

(
(µ2 − µ1µ3)α

′′
j (u)

(µ3 − µ1µ2)α
′′
j (u)

)
{1 + op(1)}.

Further, write

J1 = (D∗T
juW∗

juD
∗
ju)

−1J12

where J12 = D∗T
ju W∗

ju(εj +
∑J

j1=1 ωj1jεj1). For any 2pj×1 nonzero vector ι = (ι1, . . . , ι2pj
)T

it holds
√

h∗√
n

ιT J12 =

√
h∗√
n

n∑
i=1

{
pj∑

s=1

ιsXijsKh∗(Uij − u)εij +

pj∑
s=1

ιj+pj
XijsKh∗(Uij − u)

(
Uij − u

h

∗)
εij

}
.

It is easy to see that
∑pj

s=1 ιsXijsKh∗(Uij − u)εij +
∑pj

s=1 ιj+pj
XijsKh∗(Uij − u)

(
Uij−u

h

∗)
εij

are i.i.d random variables with mean zero. Therefore, we have that

Var

(√
h∗√
n

ιT J12

)
=

h∗((diag(Σ− 1
2 ))−2)jj

n

n∑
i=1

K2
h∗(Uij − u)ι∗T XijXT

ijι
∗

+
h∗((diag(Σ− 1

2 ))−2)jj

n

n∑
i=1

(
Uij − u

h∗

)2

K2
h∗(Uij − u)ι∗∗T XijXT

ijι
∗∗

+
h∗((diag(Σ− 1

2 ))−2)jj

n

n∑
i=1

(
Uij − u

h∗

)
K2

h∗(Uij − u)ι∗T XijXT
ijι

∗∗

+
h∗((diag(Σ− 1

2 ))−2)jj

n

n∑
i=1

(
Uij − u

h∗

)
K2

h∗(Uij − u)ι∗∗T XijXT
ijι

∗ = Q1 + Q2 + Q3 + Q4, say

where ι∗ is the first pj components of ι and ι∗∗ is the last pj components of ι. It is easy to

see that

Q1 →p fj(u)((diag(Σ− 1
2 ))−2)jjν0ι

∗T Γj(u)ι∗, Q2 →p fj(u)((diag(Σ− 1
2 ))−2)jjν2ι

∗∗T Γj(u)ι∗∗
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Q3 →p fj(u)((diag(Σ− 1
2 ))−2)jjν1ι

∗T Γj(u)ι∗∗, Q4 →p fj(u)((diag(Σ− 1
2 ))−2)jjν1ι

∗∗T Γj(u)ι∗.

Therefore, by the central limit theorem we have that

√
nh∗

n
J12

D−→ N(0,Σ1) as n →∞

Σ1 = ((diag(Σ− 1
2 ))−2)jjfj(u)Γj(u)⊗

(
ν0 ν1

ν1 ν2

)
.

Above all, it holds

√
nh∗

[
H∗

{
Ψ̂TS

j (u)−Ψj(u)
}
− h∗2

2

1

µ2 − µ2
1

(
(µ2 − µ1µ3)α

′′
j (u)

(µ3 − µ1µ2)α
′′
j (u)

)]
D−→ N(0,ΣTS

j )

as n →∞, where

ΣTS
j =

{
fj(u)Γj(u)⊗

(
µ0 µ1

µ1 µ2

)}−1

((diag(Σ− 1
2 ))−2)jjfj(u)Γj(u)

⊗
(

ν0 ν1

ν1 ν2

){
fj(u)Γj(u)⊗

(
µ0 µ1

µ1 µ2

)}−1

=
((diag(Σ− 1

2 ))−2)jj

fj(u)
Γ−1

j (u)⊗

1

(µ2 − µ2
1)

2

(
µ2

2ν0 − 2µ1µ2ν1 + µ2
1ν2 (µ2

1 + µ2)ν1 − µ1µ2ν0 − µ1ν2

(µ2
1 + µ2)ν1 − µ1µ2ν0 − µ1ν2 ν2 − µ1(2ν1 + µ1ν0)

)
.

This implies that Theorem 3.1 holds.

Proof of Theorem 3.2 Applying Lemma 8.1 the proof of Theorem 3.2 is trivial.

Proof of Theorem 4.1 Under the null hypothesis, it is easy to see that

RSS0 − RSS1 = (nJ)−1

J∑
j=1

n∑
i=1

{
XT

ij(aj(Uij)− âj(Uij))
}2

− (nJ)−1

J∑
j=1

n∑
i=1

{
XT

ij(aj(Uij)− α̂TS
j (Uij))

}2
+ op(1) = K1 + op(1) say.

Applying the consistency of θ̂sj and α̂TS
j (·) we can show that K1 →p 0 as n → ∞. This

implies RSS0−RSS1 →p 0 under the null hypothesis. Therefore, in order to prove the first
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result it suffices to show that RSS1 is bounded away from zero and infinity. According to

the definition and Theorem 3 we can show that

RSS1 →p J−1

J∑
j=1

σ2
jj > 0 as n →∞.

The second result can be proved in the same way.
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