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Congestion in stochastic data envelopment

analysis: An input relaxation approach∗

M. Asgharian†, M. Khodabakhshi‡and Luka Neralić§

Abstract

The input relaxation model and its stochastic version, recently introduced in data

envelopment analysis (DEA) literature, uses more flexibility in changes of the used

input combination to find the maximum possible output and can be useful to resource

management. We study congestion issues in this setting. Deterministic equivalent to

the stochastic congestion model is obtained. The deterministic equivalent is typically

non-linear. It is, however, shown that under fairly general conditions this non-linear

model can be replaced by an ordinary deterministic DEA model. When allowable

limits of data variations for evaluating decision making unit is permitted, sensitivity

analysis is studied.

1 Introduction. Data envelopment analysis originated by Charnes, Cooper and Rhodes

[3], provides a simple, yet powerful approach in measuring efficiency of decision making

unites (DMU) with multiple inputs and outputs. Since 1978 there has been a surge of

research on DEA and many further models were introduced in the literature. Banker,

Charnes and Cooper [2] developed a variable return to scale version of the CCR model in
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[3], so-called BCC model. Later Charnes and Zlobec [4] and Charnes et al. [5] studied sta-

bility of efficiency tests used in DEA. A thorough discussion on new development in DEA

up to 1996 can be found in Cooper, Thompson and Thrall [11]. More recently stochastic

formulation of the original models were introduced to incorporate possible uncertainty in

the inputs and/or outputs (e.g. [12], [13]). Morita and Seiford [23] studied robustness of

the efficiency results when input and output data are subject to stochastic measurement

error, while Jess, Jongen, Neralic and Stein [17] introduced a semi-infinite programming

model in DEA to study an interesting chemical engineering problem. The original models,

CCR and BCC, in DEA only allow changes in the input combination of decision making

units that are limited to the observed inputs of evaluating decision making units. Cooper

et al. [7], with a proper initiative on the data of textile industry of China for improving

congestion management, increased labor input and reduced capital input and showed the

new combination could have constructive results. Their method and results indicate that

suitable changes to determining an input combination, which incorporates potentials and

consider constraints of a society, is sometimes necessary toward increasing the output. It

therefore seems plausible that using more flexibility in the input combination, when it is

possible, might result in better outputs.

The idea initiated by Cooper et al. [7] motivated further work and new models in

DEA, e.g., Jahanshahloo and Khodabakhshi [15], Jahanshahloo and Khodabakhshi [16]

and Khodabakhshi [18], Khodabakhshi [19]. In may practical situation, one desires a

model that is flexible enough to account for possible uncertainties in the outputs and/or

inputs which may lead to more robust results. Input congestion obtained by the classic

models such as Cooper et al. [9] or those studied by Jahanshahloo and Khodabakhshi [15]

only consider deterministic DMU’s, i.e. DMU’s with deterministic (precise) data. Such

assumption may not, however, be tenable because data in many real applications can not

be precisely measured. A successful method to address uncertainty in data is replacing

deterministic data by random variables, leading to stochastic DEA.

An important issue that pertains to any output oriented DEA model is congestion which

essentially studies redundancy in resource allocations. The main thrust of this manuscript

is congestion in stochastic DEA while we allow input relaxation. The model we study here

has three components: it accommodates input relaxation, it takes into account possible

uncertainties in the data, and it conveniently allows for studying congestion. Input relax-

ation can essentially be considered as allowing a shift in the average of the input. To study
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robustness with respect to the changes in the other parameter of the Normal distribution,

i.e. variance-covariance matrix, we study sensitivity analysis with respect to changes in

the entries of that matrix. We obtain deterministic equivalents to our stochastic models.

We show that the deterministic equivalents can be transformed to quadratic programming

models which can be readily solved.

The layout of the paper is as follows: The proposed model for improving outputs, input

relaxation model, is described in Section 2. In Section 3, we introduce the congestion models

that we use to identify congestion in deterministic forms. Stochastic form of the models

are developed in Section 4. The deterministic equivalents of these stochastic models are

derived in Section 5. Section 6 discusses sensitivity analysis. We used a numerical example

to illustrate the proposed approach. Section 8 contains some concluding remarks.

2 Proposed underlying model Suppose that all input and output elements are non

negative deterministic variables. Let DMUj, (j = 1, 2, · · · , n) be n decision making units

(DMU) that convert m inputs xij (i=1,. . . ,m) into s outputs yrj (r=1,. . . ,s). The model

for improving output, input relaxation model, recently introduced in Jahanshahloo and

Khodabakhshi (2004a), is

Maximize φo + ε(
m∑

i=1

s−i1 +
s∑

r=1

s+
r −

m∑
i=1

s+
i2)

subject to xio =
n∑

j=1

λjxij + s−i1 − s+
i2, i = 1, . . . ,m

0 =
n∑

j=1

λjyrj − φoyro − s+
r , r = 1, . . . , s (1)

1 =
n∑

j=1

λj

s−i1, s
+
i2, λj, s

+
r ≥ 0 ,

where the first and second slacks in the input constraints are slacks for decrement and

increment of the i-th input. ε is a non-Archimedean element in order to optimize slacks

and ensure that all of the slacks are considered in solution. The model allows evaluating

DMU to overuse the available sources. It often happens in real application that some DMU’s

can produce far more outputs, should we allow some input relaxation by loosening some of
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the existing constraints on inputs. While loosening one or more constraints may not always

be possible, when it is, model (1) can result in DMU’s with considerable increase in the

output that is mostly due to some slight changes in one or more inputs (e.g. Jahanshahloo

and Khodabakhshi [15], Khodabakhshi [18], Khodabakhshi [19] and Khodabakhshi [20].

The columns correspond to s−i1 and s+
i2 are linearly dependent, so that at the optimal

solution at most one of these variables is positive. It is obvious that s−i1 and s+
i2 are,

respectively, maximized and minimized at the optimal solution. Let ∗ shows an optimal

value. The conditions of efficiency for evaluating DMUo can therefore be stated as follows:

Definition 1. (Efficiency according to model (1)): DMUo is efficient if the following two

conditions are satisfied :

i) φ∗o = 1

ii) s−∗i1 = s+∗
i2 = s+∗

r = 0 ∀i & ∀r.

Let E be the set of efficient DMU’s, F be the set of points on the frontier which are not

efficient because they satisfy (i) but not (ii) in the Definition 1 and N be the set of all

points which are not on a frontier and hence are inefficient.

3 Congestion Input congestion is said to exist if increasing some inputs can reduce

the output. For instance, an excess of miners bumping into each other in an underground

mine is an example, where further increase in the number of miners can result in reduction

in the amount mined. In what follows, we provide the exact definition of congestion in

general case.

Definition 2: (Input congestion) Input congestion occurs whenever increasing one or

more inputs decreases some outputs without improving other inputs or outputs. Conversely,

congestion occurs when decreasing some inputs increase some outputs without worsening

other inputs or outputs.

Jahanshahloo and Khodabakhshi [15] determined input congestion based on the pro-

posed model (1) with a two model approach. However, one can replace the two model

approach introduced in Jahanshahloo and Khodabakhshi [15] for determining input con-
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gestion by a single model, a one model approach, as follows.

Maximize φo + ε(
m∑

i=1

−s−c
i +

s∑
r=1

s+
r −

m∑
i=1

s+
i2)

subject to xio =
n∑

j=1

λjxij + s−c
i − s+

i2, i = 1, . . . ,m

0 =
n∑

j=1

λjyrj − φoyro − s+
r , r = 1, . . . , s (2)

1 =
n∑

j=1

λj

s−c
i , s+

i2, λj, s
+
r ≥ 0

It is noticeable that the way in which we could normally solve problem (1) would be via a

two-stage approach. That is, at the first stage we maximize φo, and at the second stage we

maximize the sum of the slacks. Therefore, we have reduced solving three problems, with

two-model approach, to two problems with one-model approach. This is certainly important

from a computational point of view, see Khodabakhshi [20] for a detailed discussion on this

approach. See, also, Cooper et al. [9] which provided an alternative one model approach for

determining input congestion based on output oriented BCC model introduced in Banker,

Charnes and Cooper [2]. Note that the differences between the above model and the model

introduced by Cooper et al. [2] is related to the underlying models. Cooper et al. [2]

used output oriented BCC model introduced in Banker, Charnes and Cooper [2], while

the above model used model (1) introduced in section 2. Both underlying models are

output oriented. One may refer to Jahanshahloo and Khodabakhshi [15] which discusses

differences and similarities of the two models. See, also, Jahanshahloo and Khodabakhshi

[16], Khodabakhshi [18] . The variable s−c
i in model (2) represents the congesting amount

of i-th input, see Khodabakhshi [19] and Appendix.

4 Congestion in stochastic DEA Although DEA methodology has many advan-

tages, such as no requirement for a priori weights or explicit specification of functional

relations among the multiple inputs and outputs, there is a weakness in conventional DEA

models. In fact, DEA doesn’t allow stochastic variations in input and output such as data

entry errors. As a result, DEA efficiency measurement may be sensitive to such variations.
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A DMU which is measured as efficient relative to other DMUs, may turn inefficient if such

random variations are considered. Stochastic input and output variations into DEA has

been recently studied by, for example, Huang and Li [14] and Cooper et al. [10], Khod-

abakhshi and Asgharian [?], Khodabakhshi [20] and Khodabakhshi [21] in the literature.

In what follows, we introduce stochastic version of the model (1) and congestion model (2)

which allows stochastic variations in input-output data.

Following Cooper et al. [10], let x̃j = (x̃1j, . . . , x̃mj)
t, ỹj = (ỹ1j, . . . , ỹsj)

t be random

input and output related to DMUj (j = 1, . . . , n). Let also xj = (x1j, . . . , xmj)
t, yj =

(y1j, . . . , ysj)
t show the corresponding vectors of expected values of inputs and outputs for

DMUj which are used as the observed values in model (1). Suppose that all input and

output components are jointly Normally distributed, therefore, it can be shown that the

corresponding stochastic version of the model (1) is:

Maximize φo + ε(
m∑

i=1

s−i1 +
s∑

r=1

s+
r −

m∑
i=1

s+
i2)

subject to P{
n∑

j=1

λjx̃ij + s−i1 ≤ x̃io + s+
i2} = 1− α, i = 1, . . . , m

P{
n∑

j=1

λj ỹrj − φoỹro ≥ s+
r } = 1− α, r = 1, . . . , s (3)

1 =
n∑

j=1

λj

s−i1, s
+
i2, λj, s

+
r ≥ 0 .

In model (3), α is a predetermined value between 0 and 1 which specifies the significance

level. Since a solution with φo = 1, λo = 1, λj = 0, (j 6= o) always exists, the optimal value

of objective function is greater than or equal to 1. Stochastic efficiency by the model (3)

can therefore be defined as below.

Definition 3: DMUo is called stochastically efficient at significance level α if the following

conditions are fulfilled.

i) φ∗o = 1

ii) s−∗i1 = s+∗
i2 = s+∗

r = 0 ∀i & ∀r .
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DMUo is called stochastically inefficient if one of the above conditions in Definition 3 fails

to hold. In other words, if for an optimal solution φ∗o > 1, or some of slacks are non zero,

then DMUo is stochastically inefficient. In fact, if φ∗o > 1, then all outputs for evaluating

DMUo can be increased to φ∗oyro, (r=1,. . . ,s) by using a convex combination of the other

DMUs at the significance level α.

It is worth emphasizing that optimal values of slack variables may not be attainable

in an ε-free model. A non-Archimedian ε is therefore needed in model (3) to avoid such

undesirable feature. The stochastic form of the model (2) also can be obtained as follows:

Maximize φo + ε(
m∑

i=1

−s−c
i +

s∑
r=1

s+
r −

m∑
i=1

s+
i2)

subject to P{
n∑

j=1

λjx̃ij + s−c
i ≤ x̃io + s+

i2} = 1− α, i = 1, . . . , m

P{
n∑

j=1

λj ỹrj − φoỹro ≥ s+
r } = 1− α, r = 1, . . . , s (4)

1 =
n∑

j=1

λj

s−c
i , s+

i2, λj, s
+
r ≥ 0 .

Definition 4: Congestion is present for DMUo to the predetermined level of probability

in model (4) if and only if for any optimal solution (φ∗o, λ
∗, S+∗, S−c∗), there exists at least

one s−c∗
i > 0 (1 ≤ i ≤ m).

The next theorem follows immediately.

Theorem 1: For any optimal solution of model (4), we have the following:

i) If φ∗o > 1, then DMUo is stochastically inefficient.

ii) If there exists at least one r (1 ≤ r ≤ s) for which s+∗
r > 0 then DMUo is stochastically

inefficient.

iii) If there exists at least one s−c∗
i > 0 (1 ≤ i ≤ m), then DMUo is stochastically

inefficient.

iv) If φ∗o = 1, S+∗ = 0, and S−c∗ = 0, then DMUo is on a segment of the stochastic

frontier.
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5 Deterministic equivalents In this section we exploit the normality assumption

to introduce a deterministic equivalent to model (3). We need first recall a well-known

fact about normally distributed random vectors that is used below. Suppose that ~Xk ∼
N(~µk×1, Σk×k), where µk×1 and Σk×k are, respectively, the mean value vector and the

variance-covariance matrix. Then for any matrix Am×k 6= 0 we have A ~X ∼ N(A~µ,AΣk×kA
T ),

where AT is the transpose of A. Using this result, one can obtain the following deterministic

equivalent to model (3).

Maximize φo + ε(
m∑

i=1

s−i1 +
s∑

r=1

s+
r −

m∑
i=1

s+
i2)

subject to
n∑

j=1

λjxij + s−i1 − s+
i2 − Φ−1(α)σI

i (λ) = xio, i = 1, . . . , m

φoyro −
n∑

j=1

λjyrj + s+
r − Φ−1(α)σo

r(φo, λ) = 0, r = 1, . . . , s (5)

n∑
j=1

λj = 1

s−i1, s
+
i2, λj, s

+
r ≥ 0 ,

where Φ is the cumulative distribution function (cdf) of a standard Normal random variable

and Φ−1 is its inverse. We assume that xij and yrj also are the means of the inputs and

output variables which are known. Similarly, the deterministic equivalent of model (4) can

be represented by

Maximize φo + ε(
m∑

i=1

−s−c
i +

s∑
r=1

s+
r −

m∑
i=1

s+
i2)

subject to
n∑

j=1

λjxij + s−c
i − Φ−1(α)σI

i (λ) = xio, i = 1, . . . ,m

φoyro −
n∑

j=1

λjyrj + s+
r − Φ−1(α)σo

r(φo, λ) = 0, r = 1, . . . , s (6)

n∑
j=1

λj = 1

s−c
i , λj, s

+
r ≥ 0 ,
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It is obvious, from the forms of σI
i (λ) and σo

r(φo, λ), that model (5) is a non-linear

program. Following Cooper et al. [10], we show that this non-linear program can be trans-

formed to a quadratic program. Suppose that wI
i and wo

r are nonnegative variables. Re-

placing wI
i and wo

r , respectively, by σI
i (λ) and σo

r(φo, λ) and adding the following quadratic

equality constraints

(wI
i )

2 = (σI
i (λ))2 (wo

r)
2 = (σo

r(φo, λ))2,

model (5) is transformed to a quadratic programming problem. One can therefore obtain

the optimal values φ∗o s−∗i1 , s+∗
i2 and s+∗

r by solving the quadratic program. If α = 0.5, then

Φ−1(α) = 0 and optimal values φ∗o, s−∗i1 , s+∗
i2 and s+∗

r in the stochastic form can be obtained

by solving the model (1) in which the mean values of inputs and outputs are used.

One of the following three cases must naturally occur for the i-th input of evaluating

DMUo,:

i) increase, which corresponds to s+∗
i2 > 0

ii) decrease, which corresponds to s−∗i1 > 0

iii) no change, which corresponds to s−∗i1 = s+∗
i2

To take the above point into our model, we need to impose the following constraint on s−i1
and s+

i2

s−i1 · s+
i2 = 0 .

It is worth noting that in model (1) at most one of the three aforementioned cases could

occur. For, we use the simplex method and the corresponding columns of s−∗i1 , s+∗
i2 in model

(1) are linearly dependent. We therefore have the following deterministic equivalent to

model (3),
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Maximize φo + ε(
m∑

i=1

s−i1 +
s∑

r=1

s+
r −

m∑
i=1

s+
i2)

subject to
n∑

j=1

λjxij + s−i1 − s+
i2 − Φ−1(α)wI

i = xio, i = 1, . . . ,m

φoyro −
n∑

j=1

λjyrj + s+
r − Φ−1(α)wo

r = 0, r = 1, . . . , s

n∑
j=1

λj = 1 (7)

(wI
i )

2 =
∑

j 6=o

∑

k 6=o

λjλkCov(x̃ij, x̃ik) + 2(λo − 1)
∑

j 6=o

λjCov(x̃ij, x̃io) + (λo − 1)2V ar(x̃io)

(wo
r)

2 =
∑

k 6=o

∑

j 6=o

λkλjCov(ỹrk, ỹrj) + 2(λo − φo)
∑

k 6=o

λkCov(ỹrk, ỹro) + (λo − φo)
2V ar(ỹro)

s−i1 · s+
i2 = 0, i = 1, . . . , m

s−i1, s
+
i2, λj, s

+
r , wI

i , w
o
r ≥ 0;

and similarly to model (4),

Maximize φo + ε(
m∑

i=1

−s−c
i +

s∑
r=1

s+
r −

m∑
i=1

s+
i2)

subject to
n∑

j=1

λjxij + s−c
io − s+

i2 − Φ−1(α)wI
i = xio, i = 1, . . . , m

φoyro −
n∑

j=1

λjyrj + s+
r − Φ−1(α)wo

r = 0, r = 1, . . . , s

n∑
j=1

λj = 1 (8)

(wI
i )

2 =
∑

j 6=o

∑

k 6=o

λjλkCov(x̃ij, x̃ik) + 2(λo − 1)
∑

j 6=o

λjCov(x̃ij, x̃io) + (λo − 1)2V ar(x̃io)

(wo
r)

2 =
∑

k 6=o

∑

j 6=o

λkλjCov(ỹrk, ỹrj) + 2(λo − φo)
∑

k 6=o

λkCov(ỹrk, ỹro) + (λo − φo)
2V ar(ỹro)

s−c
io · s+

i2 = 0, i = 1, . . . , m

s−c
io , λj, s

+
r , s+

i2, w
I
i , w

o
r ≥ 0.
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To simplify our presentation, we assume in the sequel that Cov(x̃ij, x̃ik) = Cov(ỹrj, ỹrk) = 0

for j 6= k, i = 1, · · · ,m and r = 1, · · · , s. This simplifies model (7) and model (8) to a

considerable extent. Such assumption is natural in many applications, while unrealistic in

many others. See §7 for further comments.

6 Sensitivity analysis In this section we discuss sensitivity of the stochastic model

and their deterministic equivalents with respect to changes in the parameter values. To

simplify our presentation we confine ourselves to changes in the variance parameters and

following Cooper et al. (2004), we permit allowable limits of data variations for only one

DMU at a time. There are other approaches, to sensitivity analysis in DEA; for example,

Charnes et al. [6] and Seiford and Zhu [24] that allow all data for all DMUs to be varied

simultaneously until at least one DMU changes its status from efficient to inefficient, or vice

versa. Without loss of generality, we assume that only variances of the input and outputs

of DMUo are subject to changes. Let σI
io, and σO

ro, be respectively replaced by σ̃I
io = σI

io +τ I
io

and σ̃O
ro = σO

ro + τO
ro, while the other parameters remain unchanged. Having incorporated

these changes in model (5) and model (6) we respectively obtain

Maximize φo + ε(
m∑

i=1

s−i1 +
s∑

r=1

s+
r −

m∑
i=1

s+
i2)

subject to x′io =
n∑

j=1

λjx
′
ij + s−i1 − s+

i2, i = 1, . . . ,m

0 =
n∑

j=1

λjy
′
rj − φoy

′
ro − s+

r , r = 1, . . . , s (9)

1 =
n∑

j=1

λj

s−i1, s
+
i2, λj, s

+
r ≥ 0 ,
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and

Maximize φo + ε(−
m∑

i=1

s−c
i +

s∑
r=1

s+
r −

m∑
i=1

s+
i2)

subject to x′io =
n∑

j=1

λjx
′
ij + s−c

i − s+
i2, i = 1, . . . ,m

0 =
n∑

j=1

λjy
′
rj − φoy

′
ro − s+

r , r = 1, . . . , s (10)

1 =
n∑

j=1

λj

s−c
i , λj, s

+
r ≥ 0 ,

where

y′ro = yro − σ̃O
roΦ

−1(α), r = 1, ..., s y′rj = yrj, j 6= o, r = 1, ..., s (11)

x′io = xio + σ̃I
ioΦ

−1(α), i = 1, ..., m x′ij = xij, j 6= o, ı = 1, ...,m (12)

Models (9) and (10) are the deterministic equivalents of stochastic models (3) and (4) under

the above assumptions.

We divide the following theorems into three categories, α = 0.5, 0 < α < 0.5 and

0.5 < α < 1. Note that the closer α to 0, the closer we are to an unconstraint optimization

problem. Likewise, the closer α to 1, the closer we are to a constraint optimization. It is

interesting to note that the most uncertain case, i.e. α = 0.5, corresponds to deterministic

model (1) as shown in the next theorem.

Theorem 2: Let α = 0.5. Then congestion is present for DMUo in input-output mean

model (1) if and only if congestion is present for DMUo in stochastic model (3).

Theorem 3: For 0 < α < 0.5, assume that (φ̄o, λ̄, S̄1
−
, S̄2

+
, S̄+) is a feasible solution of

(9), and is therefore, also a feasible solution of (3), consider the transformations defined by

φo = φ̄o, λ = λ̄, s+
r = s̄+

r − (φ̄o − λo)σ̃
I
ioΦ

−1(α), r = 1, ..., s

s+
i1 = s̄−i1 − (1− λ̄o)σ̃

I
ioΦ

−1(α), s+
i2 = s̄i2

+, i = 1, ..., m

then (φo, λ, S−1 , S+
2 , S+) is a feasible solution of model (1).
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Theorem 4: For 0 < α < 0.5,

i) Suppose that congestion is not present for DMUo in input-output model (1). Then

congestion is also not present for DMUo in stochastic model (3).

ii) Suppose that congestion is present for DMUo and DMUo ∈ N in input-output model

(1). Then congestion is also present for DMUo and DMUo ∈ N in stochastic model

(3). Moreover, s−c′∗
i = s−c∗

i + σ̃I
ioΦ

−1(α) is the congesting amount of the i-th input

of DMUo in stochastic model (3), if −1 < τ I
io/σ

I
io < s−c∗

i /(−Φ−1(α)) − 1 and −1 <

τO
ro/σ

O
ro < β+∗

r /(−Φ−1(α)) − 1, where s−c∗
i is the congesting amount of the i-th input

of DMUo in input-output mean model (1), and
∑s

r=1 β+∗
r is the optimal value of

Maximize
s∑

r=1

β+
r

subject to
n∑

j=1

λjxij − β+
i2 ≤ xio, i = 1, . . . , m

n∑
j=1

λjyrj − β+
r ≥ yro, r = 1, . . . , s

1 =
n∑

j=1

λj, (13)

β+
i2, λj, β

+
r ≥ 0 ,

Proof:

i) Consider model (9), the deterministic equivalent of model (3). Note that Φ−1(α) < 0

since 0 < α < 0.5, and hence y′ro ≥ yro and x′io ≤ xio. This then implies that

congestion is not present for DMU0 in model (3) when DMUo improves from (xo, yo)

to (x′o, y
′
o).

ii) Suppose that (β+∗
2 , β+∗, λ∗) is an optimal solution of model (13). Then as a necessary

condition of being maximal we must have

n∑
j=1

λ∗jyrj = yro + β+∗
r , r = 1, . . . , s,
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we also have
n∑

j=1

λ∗jxij ≤ xio + β+∗
i2 , i = 1, ..., m.

Since σ̃I
io < s−c∗

i /(−Φ−1(α)) and σ̃O
ro < β+∗

r /(−Φ−1(α)), we therefore obtain

y′ro = yro − σ̃o
roΦ

−1(α) < yro + β+∗
r =

n∑
j=1

λ∗jyrj

≤
n∑

j=1
j 6=o

λ∗jyrj + λ∗o(yro − σ̃o
roΦ

−1(α))

=
n∑

j=1

y′rjλ
∗
j , r = 1, .., s

n∑
j=1

λ∗jx
′
ij =

n∑
j=1
j 6=o

λ∗jxij + λ∗o(xio + σ̃I
ioΦ

−1(α)) ≤
n∑

j=1

λ∗jxij

≤ xio + β+∗
i2 = x′io − σ̃I

ioΦ
−1(α) + β+∗

i2

= x′io + s+
i2, i = 1, ..,m

where s+
i2 = −σ̃I

ioΦ
−1(α) + β+∗

i2 ≥ 0.

This means that DMUo with input-output combination of (x′o, y′o) in which x′io =

xio+σ̃I
ioΦ

−1(α) and y′ro = yro−σ̃o
roΦ

−1(α) is inefficient in model (9). Hence, DMUo ∈N

in stochastic model (3). Therefore, there are still improvements that can be made for

output y′o of DMUo in deterministic equivalent (9) of model (3). Note that xio−x′io =

−σ̃I
ioΦ

−1(α) < s−c∗
i . Let s−c′∗

i = s−c∗
i + σ̃I

ioΦ
−1(α). Then s−c′∗

i is the congesting

amount of the i-th input of DMUo in stochastic model (3). Since s−c′∗
i > 0, congestion

is present at DMUo in stochastic model (3).

Theorem 5: For 0.5 < α < 1,

i) Suppose that congestion is present for DMUo in input-output model (1). Then con-

gestion is also present for DMUo in stochastic model (3). Furthermore, s−c′∗
i =

s−c∗
i + σ̃I

ioΦ
−1(α) is the congesting amount of the i-th input of DMUo in stochastic
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model (3), where s−c∗
i is the input congesting value as determined from input-output

model (1).

ii) Suppose that DMUo ∈F and DMUo is an extreme point in input-output mean model

(1), then DMUo ∈N and congestion is present for DMUo in stochastic model (3).

Furthermore, s−c′∗
i = s−∗i1 + σ̃I

ioΦ
−1(α) is the congesting amount of the i-th input of

DMUo in stochastic model (3), where s−∗i1 is the optimal slack value obtained from

input-output model (1).

Proof:

i) Since 0.5 < α < 1, Φ−1(α) > 0. We have y′ro ≤ yro and x′io ≥ xio, where y′ro and x′io
are respectively given by (11) and (12). Therefore, worsening DMUo from (xo, yo) to

(x′o, y
′
o) implies that congestion should be present for DMUo in stochastic model (3).

The second part of (i) is obvious.

ii) Since DMUo ∈ F in input-output mean model (1), there exists a λ ≥ 0, with λo = 0,

λj ≥ 0, (j 6= o) along with non-negative slacks for which at least one of the output

slacks is zero and
∑n

j=1
j 6=o

λj = 1 such that

s+
r + yro =

n∑
j=1
j 6=o

λjyrj =
n∑

j=1
j 6=o

λjy
′
rj > yro − σ̃O

roΦ
−1(α) = y′ro, r = 1, ..., s

xio − s−i1 =
n∑

j=1
j 6=o

λjxij − s+
i2 =

n∑
j=1
j 6=o

λjx
′
ij − s+

i2 ≤ xio + σ̃I
ioΦ

−1(α) = x′io, i = 1, ..., m

i.e. DMUo is inefficient in model (9). In fact, when evaluating DMUo with adjusted

inputs and outputs, a solution with φ > 1 exists for model (9). Therefore, DMUo ∈N

in stochastic model (3). Since DMUo is the only DMU with random variations in

inputs and outputs and it is an extreme point on F in input-output mean model

(1), any reductions in its outputs will move it away from the frontier of model (1).

Notice that y′ro = yro − σ̃O
roΦ

−1(α) < yro and x′io = xio + σ̃I
ioΦ

−1(α) > xio, while

s−c′∗
i = s−∗i1 + σ̃I

ioΦ
−1(α) is the congesting amount of the i-th input of DMUo in

stochastic model (3).
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Theorem 6: For 0 < α < 0.5,

i) Suppose that congestion is present for DMUo in stochastic model (3). Then congestion

is also present for DMUo in input-output model (1). Furthermore, s−c∗
i = s−c′∗

i −
σ̃I

ioΦ
−1(α) is the congesting amount of the i-th input of DMUo in input-output model

(1), where s−c′∗
i is the input congesting value as determined from stochastic model

(3).

ii) Suppose that DMUo ∈F and DMUo is an extreme point in stochastic model (3), then

DMUo ∈N and congestion is present for DMUo in input-output model (1). Further-

more, s−c∗
i = s−∗i1 − σ̃I

ioΦ
−1(α) is the congesting amount of the i-th input of DMUo in

input-output model (1), where s−∗i1 is the optimal slack value obtained from stochastic

model (3).

Proof: It is similar to the proof of Theorem 5.

Theorem 7: For 0.5 < α < 1,

i) Suppose that congestion is not present for DMUo in stochastic model (3) . Then

congestion is also not present for DMUo in input-output model (1).

ii) Suppose that congestion is present for DMUo and DMUo∈N in stochastic model (3).

Then congestion is also present for DMUo and DMUo ∈N in input-output model (1).

Moreover, s−c∗
i = s−c′∗

i − σ̃I
ioΦ

−1(α) is the congesting amount of the i-th input of

DMUo in input-output model (1), if −1 < τ I
io/σ

I
io < s−c′∗

i /(Φ−1(α)) − 1 and −1 <

τO
ro/σ

O
ro < β+∗

r /(Φ−1(α))− 1, where s−c′∗
i is the congesting amount of the i-th input of

DMUo in stochastic model (3), and
∑s

r=1 β+∗
r is the optimal value of
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Maximize
s∑

r=1

β+
r

subject to
n∑

j=1

λjx
′
ij − β+

i2 ≤ x′io, i = 1, . . . , m

n∑
j=1

λjy
′
rj − β+

r ≥ y′ro, r = 1, . . . , s

1 =
n∑

j=1

λj, (14)

β+
i2, λj, β

+
r ≥ 0 ,

Proof: Refer to Appendix.

Illustration In Table 1, data and numerical results for five DMUs are presented. Column

4 of Table 1 shows the optimal value of the objective function of the model (1) without

ε. In order to illustrate some of our theoretical results, we consider only two cases with

Table 1: Data for illustrative example

DMU x1 y1 φ∗o
A 1 0.5 4

B 2 2 1

C 3 2 1

D 5 1 2

E 4 1 2

α = 0.2 and α = 0.8. We also assume that σI = σo = 0.45 and τ I = τ o = 0.05, therefore,

σ̃I = σ̃o = 0.5. In both cases numerical results are presented in Table 2. The first point in

pranthesis shows φ∗o and the second one shows s−c′∗.

Case 1. α = 0.2.

From a cumulative normal distribution table, we have Φ−1 = −0.84 and therefore σ̃IΦ−1(α) =

σ̃oΦ−1(α) = −0.42 for use in the following example. Assume that only point C has random

variations in its input and output. Based on (11) and (12), the adjusted input and output
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for point C with α = 0.2 is

C′: x′ = 3 + (−0.42) = 2.58 and y′ = 2− (−0.42) = 2.42.

We have φ̃C′
∗

= 1, therefore, C′ is efficient. Hence, C=C′ has no congestion. This is con-

sistent with Theorem 4(i). Adjusted input output for point E is also E′(3.58,1.42). For E′

we have φ̃E′
∗

= 1.41. Therefore, E′ is inefficient, and input congestion for point E′ is 0.58.

Using model (13) on point E with coordinates as given in Table 1, we have the following

linear program.

Maximize
s∑

r=1

β+
r

subject to 0.5λA + 2λB + 2λC + 1λD + λE − β+ ≤ 1, i = 1, . . . , m

1λA + 2λB + 3λC + 5λD + 4λE − β+
2 ≥ 4, r = 1, . . . , s

1 = λA + λB + λC + λD + λE,

β+
2 , λj, β

+ ≥ 0 ,

This gives that β+∗ = 0.58. Therefore, σ̃o(−Φ−1(α)) = +0.42 ≤ β+ = 0.58 where

s−c∗ = 1 from Figure 1 on point E. Hence, the conditions of Theorem 4(ii) are satisfied and

we have s−c′∗ = s−c∗ + σ̃oΦ−1(α) = 0.58. This is the value of input congestion for E in

stochastic model ().

Case 2. α = 0.8.

In this case, we again have Φ−1(α) = 0.84 and therefore σ̃IΦ−1(α) = σ̃oΦ−1(α) = 0.42.

Assume that only point C has random variations in its input and output. Based on (11)

and (12), the adjusted input and output for point C with α = 0.8 is x′ = 3 + (0.42) = 3.42

and y′ = 2 + (−0.42) = 1.58. φ̃C′
∗

is 1.266, therefore, C′ is inefficient. We notice that

the optimal value of slack for input at C is s−∗ = 1. Therefore, based on Theorem 5(ii),

s−c′∗ = s−∗ + σ̃oΦ−1(α) = 1 + 0.42 = 1.42 is the input congestion for C in stochastic model

(3). Furthermore, adjusted input output for DMU E is E′(4.42,0.58) with φ̃E′
∗

= 3.448.

Therefore, E′ is inefficient. Input congestion for E′ is also 1.42 which is presented in

table 2. This is consistent with Theorem 5(i). Note that from Figure 1, it is obvious

that the input congestion for E is s−c∗=1. Therefore, utilizing Theorem 5(i) we have

s−c′∗ = s−c∗ + σ̃oΦ−1(α) = 1 + 0.42 = 1.42.
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Figure 1: Congestion

Table 2: Computational results, (φ̃o
s∗

, s−c′∗)

Possibility level, α DMUC DMUE

0.2 (1, 0) (1.41, 0.58)

0.8 (1.266, 1.42) (3.45, 1.42)

7 Concluding Remarks In this paper, we formulated stochastic version of the pro-

posed model have been introduced for determining input congestion. We found determin-

istic equivalents to our stochastic programs. The deterministic equivalents are quadratic

programs that can be solved to identify the efficiency ratio, slacks and input congestion of

the evaluating DMU at a predetermined probability significance level. Considering fuzzy

counterparts of the additive model correspond to the underlying model can be suggested

for further research.

To simplify our presentation in §6, we assumed that all covariances are zero. Although

are many examples for which this assumption holds, there are also many examples in which

such assumption is realistic. Modeling covariance is very problem-specific. If the DMU’s

are indexed by time, sometimes time series models can help to model a suitable covariance

structure. A general approach used in statistical analysis is the Bayesian approach which
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puts a prior on the covariance matrix. Wishart distribution is often a reasonable choice.

One may further put a a flat prior on the hyper parameters involved in Wishart distribution

and analyze data using a formal hierarchical Bayesian approach. Such hierarchical approach

can also address sensitivity analysis since it essentially discusses changes in the parameters

of the imposed distribution on the inputs and outputs.
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Appendix

Proof. Proof of Theorem 7:

i) Consider model (9), the deterministic equivalent of model (3). Since 0.5 < α < 1,

Φ−1(α) > 0. Hence y′ro ≤ yro and x′io ≥ xio. This then implies that congestion is not

present for DMU0 in model (1) when DMUo improves from (x′o, y
′
o) to (xo, yo).

ii) Suppose that (β+∗
2 , β+∗, λ∗) is an optimal solution of model (14). Then as a necessary

condition of being maximal we must have

n∑
j=1

λ∗jy
′
rj = y′ro + β+∗

r , r = 1, . . . , s,

we also have
n∑

j=1

λ∗jx
′
ij ≤ x′io + β+∗

i2 , i = 1, ..., m.

Since σ̃I
io < s−c′∗

i /(Φ−1(α)) and σ̃O
ro < β+∗

r /(Φ−1(α)), we therefore obtain
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yro = y′ro + σ̃o
roΦ

−1(α) < y′ro + β+∗
r =

n∑
j=1

λ∗jy
′
rj

=
n∑

j=1
j 6=o

λ∗jyrj + λ∗o(yro − σ̃o
roΦ

−1(α))

≤
n∑

j=1

yrjλ
∗
j , r = 1, .., s

n∑
j=1

λ∗jxij =
n∑

j=1
j 6=o

λ∗jxij + λ∗o(xio + σ̃I
ioΦ

−1(α)) =
n∑

j=1

λ∗jx
′
ij

≤ x′io + β+∗
i2 = xio + σ̃I

ioΦ
−1(α) + β+∗

i2

= xio + s+
i2, i = 1, .., m

where s+
i2 = σ̃I

ioΦ
−1(α) + β+∗

i2 ≥ 0.

This means that DMUo with input-output combination of (xo, yo) is inefficient in

model (1). Hence, DMUo ∈ N in input-output model (1). Therefore, there are

still improvements that can be made for output yo of DMUo in model (1). Note

that x′io − xio = σ̃I
ioΦ

−1(α) < s−c′∗
i . Let s−c∗

i = s−c′∗
i − σ̃I

ioΦ
−1(α). Then s−c∗

i is the

congesting amount of the i-th input of DMUo in model (1). Since s−c∗
i > 0, congestion

is present at DMUo in model (1).
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