
International Journal of Statistics and Management System, 2010, Vol. 5, No. 1–2, pp. 118–126.
c© 2010 Serials Publications

Generalized inferences for the common scale

parameter of several Pareto populations∗

Sumith Gunasekera†and Malwane M. A. Ananda‡

Abstract

A problem of interest in this article is statistical inferences concerning the com-

mon scale parameter of several Pareto distributions. Using the generalized p-value

approach, exact confidence intervals and the exact tests for testing the common scale

parameter are given. Examples are given in order to illustrate our procedures. A

limited simulation study is given to demonstrate the performance of the proposed

procedures.

1 Introduction In this paper, we consider k (k ≥ 2) independent Pareto distributions

with an unknown common scale parameter θ (sometimes referred to as the “location pa-

rameter” and also as the “truncation parameter”) and unknown possibly unequal shape

parameters αi’s (i = 1, 2, ..., k). Using the generalized variable approach (Tsui and Weer-

ahandi [8]), we construct an exact test for testing θ. Furthermore, using the generalized

confidence interval (Weerahandi [11]), we construct an exact confidence interval for θ as

well. A limited simulation study was carried out to compare the performance of these gen-

eralized procedures with the approximate procedures based on the large sample method as

well as with the other test procedures based on the combination of p-values.
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In many statistical applications involving nuisance parameters, the conventional statis-

tical methods do not provide exact solutions. As a result, even with small sample sizes

practitioners often resort to asymptotic methods which are known to perform very poorly

with the small samples. Tsui and Weerahandi [8] generalized the conventional definition

of p-value so that the above mentioned problems can be easily resolved. Therefore, gener-

alized p-value approach based on exact probability statements rather than on asymptotic

approximations performs better than the classical p-value approach based on approximate

procedures.

Generalized inferential methods have now been successfully applied to obtain exact

tests in a variety of statistical models (for applications in regressions: Weerahandi [9] and

many others and; for applications in mixed models: Weerahandi [10] and many others; for

one-way ANOVA: Weerahandi [12]; for two-way ANOVA: Ananda and Weerahandi [2]; for

ANCOVA: Ananda [1]).

According to a number of simulation studies, when compared, tests and confidence

intervals obtained by using the generalized approach have been found to outperform the

approximate procedures both in size and power. For a complete coverage and applications

of these generalized tests and confidence intervals, the reader is referred to Weerahandi

[13, 14].

2 Generalized Variable Approach. The two-parameter Pareto distribution with the

shape parameter α and the scale parameter θ has a cumulative distribution function given

by

F (x) =

1−
(

θ
x

)α
if x ≥ θ

0 if x < θ,
(2.1)

where θ, α > 0 and x ∈ [θ,∞).

Suppose Xm= (X1, X2, . . . , Xj, . . . , Xm), j = 1, 2, . . . ,m be a random sample of size

m from (2.1). Quant [7] showed that the maximum likelihood estimators of θ and α,

respectively, are

θ̂ = min
1≤j≤m

Xj = X(1) and α̂ = mY −1, (2.2)

where Y =
∑m

j=1 ln(Xj/X(1)), and Malik [6] derived the distributions of maximum likeli-

hood estimators θ̂ and α̂ that are given by

θ̂ ∼ Pa (mα, θ ) and α̂ ∼ Γ−1(m− 1, mα). (2.3)
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where Γ−1(c, d) is the inverse gamma distribution with shape parameter c and scale param-

eter d and Pa (α, θ ) is the Pareto distribution with shape parameter α and scale parameter

θ.

Now, let {Xij}, i = 1, 2, . . . , k; j = 1, 2, . . . ,mi be independently distributed with Xij’s

i.i.d. with common p.d.f. for a given ith Pareto population.

f(xi) =
αiθ

αi

x
(αi+1)
i

I[xi ≥ θ], θ, αi > 0,∀i,

where I denoting the usual indicator function, and θ denotes the common unknown scale

parameter and αi’s are unknown and possibly unequal shape parameters. Elfessi and Jin

[5] showed that

θ̂ = T = min
1≤i≤k

Xi(1) and α̂i = Ai = miY
−1
i , (2.4)

where Yi =
∑mi

j=1 ln(Xij/Xi(1)) for i = 1, 2, ..., k. Furthermore, Elfessi and Jin [5] showed

that

T ∼ Pa (α∗, θ) and Ai ∼ Γ−1(mi − 1, miαi), (2.5)

where α∗ =
∑k

i=1 miαi and i = 1, 2, . . . , k.

Therefore,

2α∗ ln(T/θ) = V ∼ κ2
2 and 2miαiA

−1
i = Wi ∼ κ2

2mi−2, (2.6)

For a single Pareto distribution with common scale parameter θ and shape parameter

α, Arnold [3] described the confidence intervals – for θ, when α is known; for α, when θ

is known, and the joint confidence region for θ and α. Using certain classical independent

tests that are based on the combination of probabilities: namely, the Tippet, the Fisher,

the inverse normal, and the logit, Baklizi [4] constructed the confidence intervals for θ.

2.1 Statistical Testing of hypothesis for θ. Let us get started testing the hypothesis:

H0 : θ ≤ θ0 Vs. Ha : θ > θ0 , (2.7)

where θ0 is a known quantity.

Suppose Xmi
i = (Xi1, Xi2, . . . , Ximi

) is a random sample of size mi from a truncated

Pareto populations Pa (αi, θ), i = 1, 2, . . . , k, where θ denotes the common unknown scale

parameter and α1, α2, . . . , αk are unknown and possibly unequal shape parameters. Fur-

thermore, suppose xmi
i = (xi1, xi2, ..., ximi

) is the observed sample of the ith population.
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Now, from (2.6), the generalized pivot for estimating θ and αi are, respectively, given

by

Rθ = te−V/(
Pk

i=1 Wiai) and Rαi
= 0.5Wiai/mi, (2.8)

where ai is the observed value of Ai, or simply the estimate of αi and t is the observed

value of T, or simply the estimate of θ.

Now, consider the potential generalized test variable for testing

HI
0 : θ ≤ θ0 Vs. HI

a : θ > θ0 ,

where θ0 is a known quantity, defined by

Tθ = T (X;x, ζ) = Rθ − θ = te−V/(2
Pk

i=1 Wiai) − θ , (2.9)

where ζ = (θ, δ) is a vector of unknown parameters, θ being the parameter of interest and

δ is a vector of nuisance parameters

The observed value of Tθ is tθobs
= T (x;x, ζ) = 0. It is clear that when θ is specified,

Tθ has probability distribution that is free of nuisance parameters. Furthermore, when x

and nuisance parameters are fixed, the cdf of Tθ is monotonically decreasing function of θ

for any given tθ. Therefore, Tθ is a generalized test variable (Weerahandi [12]) that can

be used to test the given hypothesis. Thus, the generalized p-value, sometimes referred to

as the generalized observed level of significance or generalized significance level, for testing

HI
0 : θ ≤ θ0 Vs. HI

a : θ > θ0 is given by

p-value = Pr(Tθ < tθobs
| θ = θ0),

p-value = Pr(te−V/(
Pk

i=1 Wiai) < θ0). (2.10)

Similarly, generalized p-value for testing HII
0 : θ ≥ θ0 Vs. HII

a : θ < θ0 is given by

p-value = Pr(Tθ > tθobs
| θ = θ0),

p-value = Pr(te−V/(
Pk

i=1 Wiai) > θ0). (2.11)

Then, the generalized p-value for testing HIII
0 : θ = θ0 Vs. HIII

a : θ 6= θ0 is given by

p-value = 2 min[Pr(Tθ < tθobs
| θ = θ0), P r(Tθ > tθobs

| θ = θ0)],
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p-value = 2 min[Pr(te−V/(
Pk

i=1 Wiai) < θ0), P r(te−V/(
Pk

i=1 Wiai) < θ0)]. (2.12)

Therefore, p-value can be computed by numerical integration with respect to V and

Wi, which are independent random variables with known probability density functions.

Furthermore, p-value can also be evaluated by the Monte Carlo method in which large

numbers of random numbers from the chi-squared distributions with degree-of-freedom 2

as well as with the degree-of-freedom (2mi − 2) for i = 1, 2, · · · , k are generated and the

fraction of random numbers pairs for which Rθ < θ0 is determined. This is a Monte Carlo

estimate of the generalized p-value for testing θ ≤ θ0 Vs. θ > θ0. Similarly, the Monte

Carlo estimates of generalized p-value’s for testing θ ≥ θ0 Vs. θ < θ0 and θ = θ0 Vs.

θ 6= θ0 can also be computed.

2.2 A 100(1 − γ)% Confidence Interval for θ. Since the value of Rθ is θ and the

distribution of Rθ is independent of any unknown parameters, Rθ is a generalized pivotal

quantity for θ. Therefore Rθ is the generalized pivotal quantity for constructing 100(1−γ)%

confidence interval for θ where γ is the confidence coefficient (Weerahandi 1993).

Computing Algorithm:

1. Compute ai for i = 1, 2, . . . , k and t

2. Generate n (e.g. 75 000) random variates from each Wi ∼ κ2
2mi−2 and V ∼ κ2

2 for i =

1, 2, ..., k

3. Compute Rθ.

4. Rank this array of Rθ’s from smaller to larger.

The 100γ-th percentile of Rθ’s, Rθ(γ), is the lower bound of the one-sided 100(1− γ)%

confidence interval, and (Rθ(γ/2), Rθ(1 − γ/2)) is a two-sided 100(1 − γ)% confidence

interval.

For actual coverage probabilities (empirical confidence level), repeat the above process

for N (e.g. 50 000) times and calculate the fraction of times θ falls within the calculated

(empirical) generalized confidence intervals.

3 Example.

Example 1: Comparison of proposed procedure with the classical approach

based on large sample method.

This example deals with the Pareto distributions Xi ∼ Pa (αi, θ) where i = 1, 2, 3
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generated by the following population parameters: θ = 100, α1 = 0.5, α2 = 1.0, α3 = 1.5

and sample sizes m1 = m2 = m3 = 10. The data generated from these distributions are:

X1 ∼ Pa (α1, θ): 182.4447, 766.6342, 149.9515, 183.5521, 131.3459,

184.8249, 403.8077, 314.5954, 1264.0143, 116.9585

X2 ∼ Pa (α2, θ): 815.0133, 113.2192, 216.6859, 266.3277, 255.2327,

354.8153, 640.5599, 417.5773, 109.8015, 167.6198

X3 ∼ Pa (α3, θ): 102.8793, 142.2166, 101.4941, 104.4409, 247.1254,

316.8746, 213.758, 227.4824, 164.4707, 335.9244

Assuming that all of the above parameters are unknown, the lower and upper bound

of the one-sided 90% generalized empirical confidence interval for θ calculated from this

data, respectively, are 98.06473 and 106.2982 while a two-sided 90% generalized empirical

confidence interval for θ is given by (96.86647, 109.1483).

Furthermore, suppose we need to test θ ≤ 100 Vs. θ > 100 using this data. Then the

generalized p-value and the classical p-value, respectively, are 0.00252 and 0.11636. If we

are to test θ ≤ 95 Vs. θ > 95, the generalized p-value and the classical p-value, respectively,

are given by 0.00144 and 0.10049 while generalized p-value and the classical p-value for

testing θ ≤ 98 Vs. θ > 98 are, respectively, given by 0.00192 and 0.27830.

Table 1: Actual type I error rates for testing HI
0 when nominal level γ = 0.1.

Parameters: k θ α = (α1, α2, α3) Generalized Classical

k = 3 θ = 100 α = (0.5, 1.0, 1.5) 0.052 0.040

k = 3 θ = 100 α = (2.0, 2.5, 3.0) 0.046 0.273

k = 3 θ = 100 α = (3.5, 4.0, 4.5) 0.048 0.438

k = 3 θ = 500 α = (0.5, 1.0, 1.5) 0.044 0.000

k = 3 θ = 500 α = (2.0, 2.5, 3.0) 0.049 0.007

k = 3 θ = 500 α = (3.5, 4.0, 4.5) 0.049 0.043
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Table 1 shows the classical and generalized empirical (actual) type I error rates (size of

the test) for testing HI
0 : θ ≤ 100 Vs. HI

a : θ > 100 and for testing HI
0 : θ ≤ 500 Vs. HI

a :

θ > 500 when nominal (intended) type I error rate is at 0.1. All results are based on 50, 000

replications.

Table 2 shows the empirical probability coverage for the generalized method and classical

method when the intended nominal confidence level is at γ = 0.1. The simulation is based

on 75 000 replications.

Table 2: Probability coverages for 90% two-sided confidence intervals

Parameters: k θ σ= (σ1, σ2, σ3) Generalized Classical

k = 3 θ = 100 α = (0.5, 1.0, 1.5) 0.90 0.99

k = 3 θ = 100 α = (2.0, 2.5, 3.0) 0.82 0.86

k = 3 θ = 100 α = (3.5, 4.0, 4.5) 0.88 0.64

k = 3 θ = 500 α = (0.5, 1.0, 1.5) 0.80 0.97

k = 3 θ = 500 α = (2.0, 2.5, 3.0) 0.92 0.99

k = 3 θ = 500 α = (3.5, 4.0, 4.5) 0.86 0.98

Overall, the coverage probability of the generalized confidence interval is more satisfac-

tory compared to the classical method.

Example 2: Comparison of proposed procedure with the classical approach

based on the inverse normal method.

Table 3 shows the comparison of the expected length of the generalized confidence

interval for θ with the confidence lengths found in Baklizi [4] that are constructed using

certain classical independent tests given by the Tippett’s method, the Fisher’s method,

the inverse normal method and the logit method which are based on the combination

of p-values. This is done on the basis of simulation. To keep the consistency with the

specifications of parameters, sample sizes, and number of simulations found in Baklizi [4],

we consider k = 2 and take (m1, m2) = (10, 5), (10, 10), (10, 15), θ = 100, α1 = 1, α2 = 0.5,

1 and γ = 0.05, 0.1. Note that, since the inverse normal method outperforms other methods

in Baklizi [4], comparison is done between the confidence lengths based on inverse normal

method and the proposed generalized method.
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Table 3: Comparison of expected lengths of 100(1− γ)% confidence intervals based on the

inverse normal method and the generalized variable method.

γ α1 α2 m1 m2 Generalized Inverse normal

0.10 1 0.5 10 5 0.0398 0.2386

10 0.0249 0.1861

1.0 5 0.0338 0.1942

10 0.0212 0.1372

0.05 0.5 5 0.0400 0.3101

10 0.0251 0.2380

1.0 5 0.0341 0.2474

10 0.0216 0.1762

The inverse normal method:

Consider testing the hypothesis H i
0 : θ ≥ θ0 Vs. H i

a : θ < θ0 based on the ith

sample. The p-values of the individual tests are Pi = Pr(F2,2(mi−1) > fi), where fi is the

observed value of Fi.Thus, Pi =
(
1 + ai ln

(
ti
θ

))−mi+1 ∼ U(0, 1), Here Fi = Vi/2
Wi/2mi−2

=

(mi−1)Ai ln(Ti/θ) ∼ F2,2(mi−1) is derived from each random variables Wi (i = 1, 2) defined

as Wi = 2miαiA
−1
i ∼ κ2

2mi−2 and Vi (i = 1, 2) defined as Vi = 2miαi ln(Ti/θ) ∼ κ2
2 .

Numerical studies shows that generalized approach for hypothesis testing and confidence

interval estimation of θ generally satisfactory and better than available some other methods

for making inferences of θ.
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