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Correlated compound Poisson frailty model

for bivariate survival data∗

David D. Hanagal†

Abstract

We propose Weibull model with heterogeneity (frailty or random effect) which

is generated by correlated compound Poisson distribution with random scale for the

bivariate survival data. There are some interesting situations like survival times in

genetic epidemiology, dental implants of patients and twin births (both monozygotic

and dizygotic) where genetic behavior (which is unknown and random) of patients

follows a known frailty distribution. These are the situations which motivate to study

this particular model. We propose maximum likelihood estimation procedure for the

parameters in the proposed model.

1 Introduction. The shared gamma frailty models were suggested by Clayton [4] for

the analysis of the correlation between clustered survival times in genetic epidemiology.

An advantage is that without covariates its mathematical properties are convenient for

estimation (see Oakes ([16, 17]). However, when adjusting for environment risk factors the

analysis of the clustering is more difficult (see Parner [18]).

In a frailty model, it is absolutely necessary to be able to include some known explana-

tory variables to be able to estimate the aspects of the frailty distribution which represents

the effect of unknown covariates. The reason is that the frailty describes the influence of
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common unknown factors. If some covariates are included in the model, the variation owing

to unknown covariates should be reduced.

For monozygotic twins, examples are gender and any other genetically based covariate.

Both monozygotic and dizygotic twins share date of birth and common pre-birth environ-

ment. By measuring some potentially important covariates, we can examine the influence of

the covariates, and we can examine whether they explain the dependence, that is, whether

the frailty has no effect (or more correctly, no variation), when the covariate is included in

the model.

In genetic studies where the outcome is the time to the event of interest, failure times

among family members may not be independent. In this case, conventional survival analysis

may yield consistent estimates of the marginal hazard if the marginal hazard is correctly

modeled. However, variance estimates overestimate the true variance when the independent

variables vary within a unit, and underestimate when the independent variables are constant

within a unit, leading to incorrect inferences.

The natural parametric distribution to consider is the Weibull, because it allows for

both the proportional hazard model and the accelerated failure time model. Hanagal [7, 8,

9, 10, 11] proposed bivariate Weibull regression models with gamma, positive stable, power

variance function, lognormal frailties. Hanagal [12] proposed bivariate Weibull regression

model with compound poisson frailty.

We propose compound Poisson frailty model for the bivariate survival life time. In

Section 2, we introduce the compound Poisson distribution as a frailty and in Section 3,

we introduce compound Poisson distribution with random scale. In Section 4, we present

correlated compound Poisson frailty model for the bivariate life times. In Section 5, we

give maximum likelihood estimate of the parameters. We present a simulation study in

Section 6 and we conclude with discussions in Section 7.

2 Compound Poisson Frailty. Aalen [2, 3] introduced a compound Poisson distri-

bution as a mixing distribution in survival models which is an extension of one studied by

Hougaard [13]. The compound Poisson distribution plays a prominent role in this exten-

sion, being used here as a mixing distribution. Quite often hazard rates or intensities be

raising at the start, reaching a maximum and then declining. Hence the intensity has an

unimodal shape with finite mode. For example, 1) death rates for cancer patients, meaning

that the longer the patient lives, beyond a certain times, the more improved are his or her
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chances, 2) divorce rates, the maximal rate of divorce which occurs after a few years which

means most marriages are going through crisis and then improving (Aaberge et al. [1]].

The population intensity starts to decline simply because the high-risk individuals have

already died or been divorced, and so forth.

An additional feature which is often seen is that the total integral under the inten-

sity(hazard rate) to be finite; that is, the distribution is defective. In practical terms this

means that some individuals have zero susceptibility; they will ”survive forever”. For in-

stance, some patients survive their cancer, some people never marry, some marriages are

not prone to be dissolved, and so on. In medicine, there are several examples of diseases

primarily attacking people with a particular susceptibility, for instance genetic kind, other

people having virtually zero susceptibility of getting the disease. Another example is fertil-

ity. Some couples are unable to conceive children, so that the distribution of times to first

child birth for a population of couples will be defective. In an unemployment data, one is

also faced with the fact that some people may be completely unable to get a job.

The use of the compound Poisson distribution for Y is not only mathematically conve-

nient, but might also be seen as natural in a more substantial sense. The distribution arises

as a sum of a random number of independent gamma variables, where the number of terms

in the sum is Poisson distributed. This might be viewed as a kind of shock model, where

the vulnerability of the subject has been shaped by a random number of shocks, each of

random size. The compound Poisson variable (Y ) can be defined as follows.

Y =

{
X1 + X2 + · · ·+ XN , N > 0

0, N = 0
(2.1)

where N is Poisson distributed with mean ρ, while X1, X2, . . . are independent and gamma

distributed with scale parameter ν and shape parameter η. The distribution of Y consists

of two parts; a discrete part which corresponds to the probability of zero susceptibility, and

a continuous part on the positive real line. The discrete part is

P (Y = 0) = exp(−ρ), (2.2)

which decreases as ρ increases. The distribution of the continuous part can be found by

conditioning on N and using the fact that the X’s are gamma distributed. It can be written

as

fY (y; η, ν, ρ) = exp[−(ρ + νy)]
1

y

∞∑
n=1

ρn(νy)nη

Γ(nη)n!
. (2.3)
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The parameter set for the compound Poisson distribution is η, ν, ρ > 0. The expectation

and variance are given by

E(Y ) = ρη/ν and V ar(Y ) = ρη(η + 1)/ν2. (2.4)

The Laplace transforms of the gamma and Poisson distributions are given by LX(s) =

[ν/(ν+s)]η and LN(s) = exp(−ρ+ρe−s), respectively. Now Laplace transform of compound

Poisson distribution is

LY (s) = exp

{
−ρ + ρ

(
ν

ν + s

)η}
. (2.5)

The survival function given the frailty Y is given by

ST |Y (t|y) = exp(−yM(t)) (2.6)

where M(t) is the integrated hazard of T . The unconditional survival function is given by

ST (t) = exp

(
−ρ

{
1−

[
ν

ν + M(t)

]η})
. (2.7)

The hazard rate γ(t) is given by

γT (t) =
ρηνηm(t)

[ν + M(t)]η+1
. (2.8)

3 Compound Poisson distribution with random scale. An extension of the com-

pound Poisson frailty model to family data, is to apply a probability distribution to the

parameter ρ which was proposed by Moger and Aalen [15]. A probability density of the

parameter ρ expresses the variation between families. The individuals of a given family are

characterized by having a specific value of ρ, so they will have correlated frailties, while

individuals from different families are independent. This yields a two level model, where

the frailty has two components: A familial component, for instance relating to shared genes

and environment, and an individual component, which could relate to exposure to individ-

ual environment. Thus the model does not fit into the traditional dichotomy of shared

frailty models. We would like to stress the importance of frailty models having clear bio-

logical content, corresponding to understand a problem from a substance point of view, as

opposed to just making mathematical assumptions. Since compound Poisson distribution
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is included in the power variance function (PVF) distributions, this corresponds to ran-

domizing a scale parameter in the PVF distributions. Hanagal [12] proposed compound

Poisson frailty model when ρ is non-random for the bivariate Weibull baseline model. He

also estimated the parameters in the model.

This paper will focus on densities for ρ which are included in the PVF distribution

family. Specifically we consider the gamma, inverse Gaussian and positive stable distri-

butions. As given in Hougaard [14], the distributions can be united in a three-parameter

family with parameter set α ≤ 1, ε > 0, with θ ≥ 0 for α > 0, and θ > 0 for α ≤ 0.

For α = 0 the gamma distributions are obtained. The inverse Gaussian distributions are

obtained for α = 1/2, and for θ = 0 one gets the positive stable distributions. The positive

stable distributions are absolutely continuous and nonnegative, with unimodal densities

(Hougaard [13]. For α = 1, a degenerate distribution is obtained, at ε, independent of θ.

This corresponds to independence within families. This is given by (2.3), with η = −α,

ρ = −(ε/α)θα and ν = θ. Hence, values of α < 0 yield the compound Poisson distribu-

tions. The parametrization used in Section 2 is the most appropriate for α < 0, while the

parametrization by Hougaard is more easy to use for α > 0. The expectation and variance

of the distribution of ρ are

E(ρ) = εθα−1 and V ar(ρ) = ε(1− α)θα−2. (3.1)

Thus, the positive stable distribution has no finite expectation or variance. The Laplace

transform of ρ is given by

Lρ(s) = exp{− ε
α
[(θ + s)α − θα]}. (3.2)

In the case of the mixed compound Poisson distribution, the unconditional discrete part of

Y is given by

P (Y = 0) = E(exp(−ρ)] = Lρ(1). (3.3)

The density of the unconditional continuous part of Y can be calculated in a similar manner

by noting that

E[ρn exp(−ρ)] = (−1)nL(n)
ρ (1), (3.4)

where L(n)(s) denotes the n-th derivative of the Laplace transform. By inserting the density
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of ρ into (2.3) and integrating out ρ, the density of Y may be put on the following form:

hY (y; η, ν, α, θ, ε) = exp(−νy)
1

y

∞∑
n=1

(νy)nη

Γ(nη)n!
(−1)nL(n)

ρ (1). (3.5)

The derivatives of the Laplace transform for the power variance function distribution for ρ

are of the form

L(n)
ρ (s) = (−1)nLρ(s)

n∑
j=1

cn,j(α)εj(θ + s)jα−n, (3.6)

as shown in Hougaard [14]. The coefficients cn,j(α) are given by the recursive formula

cn,1(α) = Γ(n− α)/Γ(1− α), cn,n(α) = 1,

Cn,j(α) = Cn−1,j−1(α) + cn−1,j(α)[(n− 1)− jα].

The Laplace transform of ρ, Lρ(s), combined with (2.5) yield the expression

LY (s) = Lρ

(
1−

(
ν

ν + s

)η)
(3.7)

for the Laplace transform of Y . For the PVF distributed ρ, this equals

LY (s) = exp

(
− ε

α

{[
θ + 1−

(
ν

ν + s

)η]α

− θα

})
if α ≤ 1, α 6= 0, (3.8)

LY (s) =

(
θ

θ + 1− (
ν

ν+s

)η

)ε

if α = 0. (3.9)

The Laplace transform of the gamma mixture distribution (α = 0) is obtained by taking

the limit of the general Laplace transform. The positive stable mixture distribution (θ = 0)

gives some nice properties when used as a frailty distribution. The Laplace transform of Y

in this case is

LY (s) = exp

{
− ε

α

[
1−

(
ν

ν + s

)η]α}
. (3.10)

Apart from the exponent α, this is of the same form as the Laplace transform of a compound

Poisson distribution given in Equation (2.5), with ε/α playing the role of ρ.

Now the survival function of the lifetime T is given by

ST (t) = LY (M(t))

= exp

(
− ε

α

{[
θ + 1−

(
ν

ν + M(t)

)η]α

− θα

})
if α ≤ 1, α 6= 0,

ST (t) =


 θ

θ + 1−
(

ν
ν+M(t)

)η




ε

if α = 0.
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The mean and variance of Y can easily be found by means of (2.4), by noting that

E(Y ) = E(E(Y |ρ)) and that Var(Y ) = Var[E(Y |ρ)] + E[Var(Y |ρ)]:

β = E(Y ) =
εη

νθ1−α
and V ar(Y ) =

εη[θ + η(1− α + θ)]

ν2θ2−α
. (3.11)

Note that when a positive stable mixture distribution is used, the frailty distribution Y has

no finite expectation or variance. When ρ is not stable distributed (θ > 0), the Laplace

transform in (3.8) can be reparameterized by using the expectation β from (3.11) and the

squared coefficient of variation

d =
V ar(Y )

E(Y )2
=

[θ + η(1− α + θ)]

θαεη

as new parameters. The value d = 0 corresponds to no heterogeneity.

4 Correlated compound Poisson frailty for the bivariate survival lifetimes.

Moger and Aalen [15] developed correlated compound Poisson frailty model for the survival

time of the two individuals in a family. Let Y1 and Y2 be the frailty variables of two

individuals in a family with joint distribution hY1,Y2(y1, y2). Let their marginal distribution

given ρ, fY1(y1|ρ) and fY2(y2|ρ), be independent identically distributed compound Poisson

with parameters η and ν. The parameter ρ, which is common for both Y1 and Y2, is assumed

to be PVF distributed with parameters α, ε and θ. The joint discrete part of (Y1, Y2) is

P (Y1 = 0, Y2 = 0) = Eρ[exp(−2ρ)] = Lρ(2).

The joint density of the continuous part of the distribution can be found analogously

to (3.5), by using the ρ, in the distributions fY1|ρ(y1|ρ) and fY2|ρ(y2|ρ) to get derivatives of

Lρ(s). It is given by

hY1,Y2(y1, y2; η, ν, α, θ, ε) =
1

y1y2

exp[−ν(y1 + y2)]
∞∑

n=2

(−1)nL(n)
ρ (2)

.

n−1∑

k=1

nunηy
(n−k)η
1 ykη

2

Γ((n− k)η)Γ(kη)(n− k)!k!
,

where L
(n)
ρ (s) is defined in (3.6). Since the marginal distributions are compound Poisson

given ρ, the joint distribution has an interesting feature: it is possible to have two related
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individuals where one has zero frailty and the other has a positive frailty. The probability

is given by

P (Y1 = 0, Y2 > 0) = Eρ[exp(−ρ)− exp(−2ρ)] = Lρ(1)− Lρ(2).

In some situations, this is an aspect that may make the model fit better than a shared

frailty model. Also, it is interesting for the interpretation. For instance, testicular cancer

is hypothesized to be caused by some sort of damage in foetal life (Henderson et al., 1988).

This damage could be due to genetics, mothers or pregnancies. If there is a mother effect,

it may not be natural with the possibility of Y1 = 0 and Y2 > 0.

By using (3.7), one easily finds their joint Laplace transform

LY1,Y2(s, t) = Lρ

(
2−

(
ν

ν + s

)η

−
(

ν

ν + t

)η)
,

which in the case of PVF distributed ρ is

LY1,Y2(s, t) =





exp
(− ε

α

{[
θ + 2− (

ν
ν+s

)η − (
ν

ν+t

)η]α − θα
})

if α ≤ 1, α 6= 0,[
θ

θ+2−( ν
ν+s)

η−( ν
ν+t)

η

]ε

if α = 0.
(4.1)

Note that the univariate Laplace transform in (3.8) appears by setting t = 0.

By noting that Cov(Y1, Y2) = COV (E(Y1|ρ), E(Y2|ρ)) and using (2.4), the correlation

coefficient between frailties of two individuals in a family obtained by Moger and Aalen

[15] is

Corr(Y1, Y2) =
η(1− α)

θ + η(1− α + θ)
if θ > 0. (4.2)

The parameter θ determines the degree of correlation. Since none of the moments exist

(when θ = 0), the correlation coefficient cannot be used as a measure of dependence for the

compound Poisson-positive stable distribution. For values of θ close to zero, the correlation

between two related individuals is approaching one. It is evident that the correlation has

to be larger than zero, so the model can not handle negative dependencies.

Let T1 and T2 be the lifetimes of the two individuals which are independent. The

survival function of (T1, T2) given the two dependent frailties (Y1, Y2) is given by

ST1,T2|Y1,Y2(t1, t2|y1, y2) = exp(−M1(t1)y1 −M2(t2)y2). (4.3)



Correlated compound Poisson frailty model 135

The unconditional survival function of (T1, T2) is obtained by integrating (Y1, Y2) out

ST1,T2(t1, t2) = E(exp(−M1(t1)Y1 −M2(t2)Y2))

=





exp
(
− ε

α

{[
θ + 2−

(
ν

ν+M1(t1)

)η

−
(

ν
ν+M2(t2)

)η]α

− θα
})

if α ≤ 1, α 6= 0,[
θ

θ+2−
“

ν
ν+M1(t1)

”η−
“

ν
ν+M2(t2)

”η

]ε

if α = 0.

(4.4)

Let (T1, T2) are independent Weibull distributions with W(λ1, c1) and W(λ2, c2) respec-

tively, where λi’s scale parameters and ci’s are shape parameters of Weibull distributions.

The survival function of Ti is

STi
(ti) = exp(−λit

ci
i ). (4.5)

Now the unconditional survival function of (T1, T2) with correlated compound Poisson

frailties is given by

ST1,T2(t1, t2) =





exp
(
− ε

α

{[
θ + 2−

(
ν

ν+λ1t
c1
1

)η

−
(

ν
ν+λ2t

c2
2

)η]α

− θα
})

if α ≤ 1, α 6= 0,
 θ

θ+2−
„

ν

ν+λ1t
c1
1

«η

−
„

ν

ν+λ2t
c2
2

«η




ε

if α = 0

(4.6)

In order to solve the identifiability problem, we assume a mean of 1 for the frailty

distributions. For the gamma distribution, this can be achieved by setting θ = ε. In the

shared PVF model, E(Y ) = 1 is achieved by setting ε = θ1−α. The shared frailty models

are compared to a compound Poisson model where ρ is gamma distributed, yielding a

compound Poisson-gamma model. To secure a unit mean for the frailty, we get ε = νθ/η.

In this paper, we assume the distribution of frailty as compound Poisson-gamma ( with

α = 0) distribution for the bivariate survival data. The bivariate survival function based

on this frailty is given by

S(t1, t2) =


 θ

θ + 2−
(

ν
ν+λ1t

c1
1

)η

−
(

ν
ν+λ2t

c2
2

)η




νθ/η

. (4.7)
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5 Estimation of Parameters. For the bivariate life time distribution, we use univari-

ate censoring scheme given by Hanagal [5, 6] because the individuals do not enter at the

same time and withdrawal or death of an individual or termination of the study will censor

both life times of the components. Here the censoring time is independent of the life times

of both components. This is the standard univariate right censoring for both failure times

T1 and T2.

Suppose that there are n independent pairs of components under study and i-th pair of

the components have life times (t1i, t2i) and a censoring time (wi). The life times associated

with i-th pair of the components are given by

(T1i, T2i) = {t1i, t2i}, max(t1i, t2i) < wi

= {t1i, wi}, t1i < wi < t2i

= {wi, t2i}, t2i < wi < t1i

= {wi, wi}, zi < min(t1i, t2i). (5.1)

Discarding factors which do not contain any of the parameters, we want to estimate the

parameters in the proposed model. Now the likelihood of the sample of size n is given by

L = (

n1∏
i=1

f1i)(

n2∏
i=1

f2i)(

n3∏
i=1

f3i)(

n4∏
i=1

Fi) (5.2)

where

f1i =
∂2S(t1i, t2i)

∂t1i∂t2i

, 0 < t1i < t2i < wi

f2i = −∂S(t1i, wi)

∂t1i

, 0 < t1i < wi < t2i

f3i = −∂S(wi, t2i)

∂t2i

, 0 < t2i < wi < t1i

Fi = S(wi, wi), 0 < wi < min(t1i, t2i)

n1, n2, n3 and n4 are the number of observations observed to fail in the range space

corresponding to f1i, f2i, f3i and Fi, respectively. f1i is the conditional pdf with respect to

Lebesque measure in R2 and f2i and f3i are the conditional pdf with respect to Lebesque

measure in R1 in their respective regions.

The likelihood equations can be obtained by taking first order partial derivatives of the

log-likelihood with respect to the parameters and equating to zero. We use the Newton-
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Raphson method to solve the MLE. The observed Fisher information matrix with appro-

priate second order partial derivatives of the log-likelihood with respect to the parame-

ters is I1. The inverse of the observed information matrix (I1) is the observed variance-

covariance matrix (Σ̂11 = I−1
1 ) of the MLEs γ̂

′
= (η̂, θ̂, ν̂, ĉ1, ĉ2, λ̂1, λ̂2)

′ of the parameters

γ
′
= (η, θ, ν, c1, c2, λ1, λ2)

′.

We expect that
√

n(γ̂ − γ) has asymptotic multivariate normal distribution with mean

vector zero and variance-covariance matrix Σ11, where Σ11 is 7 × 7 variance covariance

matrix of γ̂
′
= (η̂, θ̂, ν̂, ĉ1, ĉ2, λ̂1, λ̂2)

′

6 Simulation study. We generate 1000 samples of sizes n = 50, 100, and 200 from

BVW model and obtain MLEs of the parameters. We observed from the simulation study

as in Table 1 that MLEs are very close to the known values of the parameters in the

proposed model and standard errors(se) of the MLEs are very low. The empirical standard

errors(ese) and se are very close.

7 Discussions: We have simulated 1000 samples each of size n = 50, 100, and 200. If I

take smaller sample sizes for the simulation, there is a problem of convergence of estimates

of the parameters in N-R procedure. In the survival data, one should remember that

the number of failures is always lower than the sample size. In the simulation process,

the percentage of censoring changes from sample to sample for fixed sample size. So the

effective sample size for the parametric model is the number of failures. In our case, we

have a frailty model with seven parameters under the base line model. The sample sizes

20 and 40 are very small for this model with seven parameters and censoring scheme and

so we have taken sample sizes as n = 50, 100, and 200. The efficiency and convergence of

estimators depend on three things as follows:

1) sample size,

2) percentage of censoring,

3) number of parameters in the model.

When the sample size is very small and it is highly censored and there are higher

number of parameters in the model, the probability of convergence (in N-R procedure) of

the estimates of the parameters is very low as compared to larger sample sizes [by law of

large numbers(LLN)].
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Table 1: MLEs of the Parameters in Correlated Compound Poisson Frailty under Weibull

Baseline Model.

Parameters η θ ν c1 c2 λ1 λ2

values 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n = 50

Est. 0.3886 0.5219 0.6192 0.6882 0.7875 0.9215 0.9865

se 0.0257 0.0228 0.0267 0.0278 0.0241 0.0226 0.0242

ese 0.0269 0.0242 0.0271 0.0292 0.0258 0.0240 0.0259

n = 100

Est. 0.4106 0.5089 0.6118 0.6919 0.7921 0.9170 0.9901

se 0.0211 0.0202 0.0241 0.0244 0.0198 0.0219 0.0214

ese 0.0224 0.0221 0.0256 0.0269 0.0211 0.0225 0.0216

n = 200

Est. 0.4036 0.5039 0.6075 0.6981 0.7966 0.9064 0.9971

se 0.0118 0.0120 0.0116 0.0113 0.0122 0.0115 0.0127

ese 0.0126 0.0132 0.0121 0.0123 0.0120 0.0128 0.0138

Parameters η θ ν c1 c2 λ1 λ2

values 0.6 0.7 0.8 0.9 1.1 1.2 1.3

n = 50

Est. 0.5815 0.7221 0.8186 0.8825 1.1224 1.1837 1.3219

se 0.0279 0.0268 0.0271 0.0256 0.0259 0.0244 0.0235

ese 0.0283 0.0276 0.0277 0.0269 0.0263 0.0251 0.0241

n = 100

Est. 0.5883 0.7129 0.8125 0.8899 1.1161 1.2148 1.3138

se 0.0215 0.0208 0.0226 0.0211 0.0197 0.0202 0.0196

ese 0.0227 0.0216 0.0235 0.0222 0.0204 0.0216 0.0203

n = 200

Est. 0.5921 0.7048 0.8042 0.8956 1.1026 1.1972 1.3023

se 0.0121 0.0127 0.0124 0.0114 0.0129 0.0111 0.0115

ese 0.0128 0.0135 0.0128 0.0121 0.0127 0.0116 0.0119
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