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Abstract: The present research seeks to estimate a set of variance-covariance approaches utilizing data 
from the Pakistan stock exchange's non-financial sector. The research spans ten years, from January 3, 
2011, through December 31, 2021. The data is divided in two parts. The first part of the data is used to 
estimate covariance matrices, while the second part is used to evaluate the estimators' ex-post 
performance. The weekly market price of shares is used to create equally weighted indexes of ten 
sectors. The research assesses the accuracy and efficacy of twelve covariance estimators using two 
evaluation criteria, RMSE and MVP risk profile. The study's results, based on RMSE and MVP risk 
profile, show that applying more complex covariance estimators versus equally weighted variance-
covariance estimators in portfolio creation provides no incremental advantage to portfolio managers 
.Hence, less complicated methods are preferable. 

Keywords: Variance-covariance matrix, portfolio construction, Pakistan stock exchange.  
 

1. Introduction 

The conventional portfolio optimization approach by Markowitz (1952)has contributed significantly to 
the modern theory of investment. Markowitz came up with the idea of mean variance (MV) and solved 
the optimization problem using quadratic equation. His quantitative method has been tested in number 
of studies and discussed widely in literature. The proposed method had a huge impact on the 
economics of the financial world and is considered as a milestone in modern finance. It eventually led 
to the well-known Capital Asset Pricing Model (CAPM), which was developed by Sharpe (1964). 
Theoretically, mean-variance (MV) approach suggests investor an optimal framework for the placement 
and management of investments based on relevant variance-covariance matrix and future return vectors 
parameters. However, when used practically in investment management environment, this approach 
produces multiple corner solutions (Broadie, 1993), having inherent issues of estimation errors 
(Michaud, 1989), the portfolio reallocations result in significant transaction costs (Best & Grauer, 
1991), and in many cases the results of out-of-sample asset allocation are extremely poor. The issue 
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aggravates specially at the when the size of portfolio increases and it suggests more problematic 
solutions.  

Traditional mean-variance optimization issues may be looked at in two ways. The theoretical approach 
concentrates on the assumptions and hypothetical elements of the mean-variance paradigm, while the 
implementation method examines how investors might estimate the anticipated return vectors and 
covariance matrix of investment vehicles in order to properly apply the framework. The current research 
focuses on the implementation side of mean-variance optimization. Elton and Gruber (1973) and 
DeMiguel, Garlappi, and Uppal (2007) underscore the key role played by the covariance estimator in 
effectively applying mean-variance optimization techniques. The estimation of variance-covariance 
matrix is said to be the most challenging and difficult aspect of the framework Ledoit and Wolf 
(2003b). 

2. Literature review 

The method of sample covariance matrix is a rational approach for estimating covariances of asset 
classes pair-wise using data from previous covariances. Researches criticized this method for number of 
reasons (Pafka & Kondor, 2004; Saghir, 2020). It is particularly prone to mistakes when the quantity of 
underpinning asset classes exceeds the sample size. This phenomenon is referred to as error 
maximization by (Michaud, 1989). Sharpe (1963) presents a simple technique to explain covariances by 
only a single element, the market factor. Researchers such as Vasicek (1973), Blume (1971) and King 
(1966) tried to enhance the estimator by taking into consideration the betas' mean-reverting tendency, 
modifying their variation, and incorporating additional variables other than the sole common factor, 
respectively. 

Factors pertaining to historic sample covariances can also be identified using statistical and non-theory 
based methods like principal component analysis (PCA). Elton and Gruber (1973) recommend the use 
of average correlation covariance estimators to estimate covariance. While the research on covariance 
estimators is much too broad to cover in this study, however the typical approach of determining the 
covariance matrix is subject to either estimation or specification errors. In light of the inaccuracies and 
statistical instability of estimation methods, DeMiguel et al. (2007) come to the empirical conclusion 
that non-theory based methods of portfolio diversification outperform more complex asset allocation 
techniques in the long run.  

The financial literature makes use of a basic statistical theory in order to achieve the best possible 
balance between estimate error and specification error. Bengtsson and Holst (2002), Chan, Karceski, 
and Lakonishok (1999), Jagannathan and Ma (2003),Ledoit and Wolf (2003a), Ledoit and Wolf 
(2003b) demonstrate experimentally that shrinkage-based estimators and the portfolio of estimators are 
the most appropriate methods for estimating covariance. According to decision theory, there is a 
moment when the specification error and estimate error are at their least significant differences. It has 
been proposed by Stein (1956) that the optimal point can be identified by taking a weighted average of 
the two estimators.   

According to Ledoit and Wolf (2003a), the Bayesian shrinkage technique to optimization may be used 
in conjunction with the single-index covariance estimator and the sample variance-covariance estimator 
to improve performance. This procedure ensures that the estimation error in the sample covariance is 
reduced while without causing a significant amount of specification error. It produces a shrinkage 
matrix, in which all of the covariances (off-diagonal components) of the standard sample matrix are 
shrunk without affecting the diagonal members of the conventional sample matrix.  Ledoit and Wolf 
(2003b)show that the sample covariance may be reduced to a constant correlation covariance estimator 
by shrinking the sample covariance. Jagannathan and Ma (2003) propose a portfolio of covariance 
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estimators to compete with the more complex Ledoit and Wolf (2003a) estimator. The portfolio of 
covariance estimators includes the equally weighted average of the sample variance-covariance estimator 
with any other covariance estimator, as well as the sample covariance estimator plus any other 
covariance estimator.  

Compared to the sample covariance estimator, both the shrinkage estimator and the equally weighted 
estimate are expected to perform much better. Shrinkage estimators are conceptually more sophisticated 
than the sample covariance estimator and equally weighted average of a portfolio of estimators. 
Benninga and Disatnik (2007) utilize data from the New York Stock Exchange to demonstrate that 
investors do not gain from employing shrinkage estimators over an equally weighted portfolio of 
covariance estimators when compared to an equally weighted portfolio of covariance estimators. When 
it comes to the relative benefits of sophisticated and simple estimators in the setting of equities markets 
of Asian nations, there is no clear agreement in the literature with regard to variance-covariance 
estimation. 

Section 3 covers the data and research techniques employed, as well as the criteria used to compare the 
results. Section 4 presents the study's empirical findings, which are followed by discussion. Section 5 
concludes this study. 

3. Data Structure and Research methodology 

The study uses official data portal of Pakistan stock exchange (PSX) for data-gathering of non-financial 
companies. Time period of the study ranges from January 3, 2011 to December 31, 2021. The data set 
is divided into two sections. The first half of the data is utilized to calculate covariance matrices, while 
the second is utilized to test the estimators' ex-post efficiency. Equally weighted indices of 10 sectors are 
constructed using weekly market price of shares while each index composed of companies with in that 
sector. The returns are estimated based on the continuous compounding assumption for each asset 
group using: (Ri,t)=ln(Et/Et-1).Here. Et and Et-1 represents the recent and previous price of share 
respectively.  

3.1. The variance covariance matrix 

The variance covariance matrix is a combination of diagonal and off-diagonal elements in a square. In 
the matrix, elements in diagonal places show variances while elements in off-diagonal places show 
covariances among all asset classes. The matrix can be written as follow: 

 

∑ =

[
 
 
 
 
 ∑𝑜1

2 𝑙⁄

∑𝑜2𝑜1 𝑙⁄

⋯

∑𝑜𝑖𝑜1 𝑙⁄

∑𝑜1𝑜2 𝑙⁄

∑𝑜2
2 𝑙⁄

⋯

∑𝑜𝑖𝑜2 𝑙⁄

⋯
⋯
⋯
⋯

∑𝑜1𝑜𝑖 𝑙⁄

∑𝑜2𝑜𝑖 𝑙⁄

⋯

∑𝑜𝑖
2 𝑙⁄

]
 
 
 
 
 

 

 

Where; the symbol of ∑ represents the matrix of variance-covariance of order (o×o), 𝑙 represents to the 
elements of data for each asset group whereas 𝑜1 represents the mean deviation and 𝑜1

2 𝑙⁄ represents 
covariance of asset category of i and j. 

The following table-1 presents list of covariance methods considered.  
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Table-1 Alternative covariance estimators  

Sr.         Covariance Estimators           Signs 

 
        Traditional variance-covariance estimators           

 
1         Diagonal matrix of variance-covariance            VCM-1 
2         Sample matrix of variance-covariance            VCM-2 
3         Constant correlation matrix of variance-covariance            VCM-3 

 
        Factor approach of variance-covariance estimators           

 
4         Single index matrix of variance-covariance           VCM-4 

 
        Portfolio of Estimators           

 
5         Portfolio composed of Sample, diagonal matrix           VCM-5 
6         Portfolio composed of Sample, single index matrix           VCM-6 
7         Portfolio composed of Sample, constant correlation covariance matrix            VCM-7 
8         Portfolio composed of Sample, single index & constant correlation matrix           VCM-8 
9         Portfolio composed of Sample, overall mean &single index matrix           VCM-9 

 
        Shrinkage based variance-covariance estimators           

 
10         Shrinkage towards diagonal matrix            VCM-10 
11         Shrinkage towards single index matrix           VCM-11 
12         Shrinkage towards constant correlation matrix            VCM-12 

 

3.1.1. Diagonal matrix of variance-covariance 

It's a covariance vector field with sample variances in diagonal entries and Zeroes in off-diagonals. The 
matrix can be written as follow: 

Σ𝑑 =

[
 
 
 
 
 ∑𝑜1

2 𝑙⁄ 0 ⋯ 0

0 ∑𝑜2
2 𝑙⁄ ⋯ 0

⋯ ⋯ ⋯ ⋯

0 0 ⋯ ∑𝑜𝑖
2 𝑙⁄

]
 
 
 
 
 

 

3.1.2. Sample matrix of variance-covariance 

Suppose, Z are asset classes with N total observation for asset’s returns. Where, 𝑝1𝑡 represents return for 

ithclass of asset at the time t, 𝑝1̅̅̅is mean return of ith class of asset as 𝑝1̅̅̅=∑
𝑝𝑖𝑡

𝑁
𝑁
𝑡=1 , i=1,2,3,…,N. Let, M be 

the excess return of asset classes while the transpose of the matrix be MT. 

 

𝑀 =

[
 
 
 
 (𝑝11 − 𝑝1

−
) (𝑝21 − 𝑝2

−
) ⋯ (𝑝𝑍1 − 𝑝𝑌

−
)

(𝑝12 − 𝑝1

−
) (𝑝22 − 𝑝2

−
) ⋯ (𝑝𝑍2 − 𝑝𝑌

−
)

⋯ ⋯ ⋯ ⋯
(𝑝1𝑁 − 𝑝1

−
) (𝑝2𝑁 − 𝑝2

−
) ⋯ (𝑝YN − 𝑝Y

−
)]
 
 
 
 

 

Σ𝑠 =
𝑀T∗M

K−1
 …… (ii) 

The sample matrix of variance-covariance (Σ)is estimated using equation (ii) in this investigation. 
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3.1.3. Constant correlation matrix of variance-covariance 

Elton and Gruber (1973)introduced the constant correlation matrix of variance-covariance. According 
to this model, co-movement of asset classes is driven by a constant correlation coefficient between them. 
In order to calculate this constant correlation coefficient, the mean among all the asset returns 
of correlation coefficients is taken into account. It can be referred to as the overall mean approach. The 
relationship between the correlation coefficient and the covariance may be expressed mathematically as 
𝜎𝑝𝑠 = 𝜌ps𝜎p𝜎𝑗𝑠,while covariances are calculated through the following method. 

𝜎𝑖𝑘 = {
𝜎𝑝𝑝           = 𝜎p

2  where p = k

𝜎𝑝𝑠 = 𝜌ps𝜎p𝜎𝑗𝑠    where p ≠ k
 

Following Chan et al. (1999), study uses the approach to estimate covariance matrix of asset returns. 
The average correlation coefficient is computed after estimating the correlation matrix among these 
asset classes. The estimated average correlation coefficient is utilised as the covariance among all asset 
classes in the calculation of the covariance matrix. 

3.1.4. Single index matrix of variance-covariance 

The method of single index, suggested by Sharpe (1963) assumes linear relation between asset return for 
single asset class and the benchmark return. The formula is considered as an attempt to reduce the 
complexity of sample covariance estimators. The mathematically expression can be written as:  

𝑦𝑠𝑡 = 𝜃𝑠 + 𝛾𝑠𝑟𝑡 + 𝜀𝑡  

Here, 𝑦𝑠𝑡 represents return for asset class‘s’, 𝑟𝑡 denotes to return of the market portfolio and 𝜀𝑡  shows 
the error term which is 𝐸(𝜀𝑠𝜀𝑝) = 0. The covariance matrix calculated using the single index approach 
is expressed as: 

𝜎𝑠𝑗 = {
𝛽j𝛽p𝜎r

2     wheres = p

𝜎s
2     where s ≠ p

 

 

Here, 𝜎r
2 represents variance for return of benchmark and 𝛽j denotes to the slopes. The method for the 

estimation of covariance based on single index is relatively more robust to other covariance estimator in 
terms of estimation error. It has significantly less estimation error compared to the sample variance 
covariance estimator. This method, is however exposed to specification error due to assumption of 
single factor. 

3.1.5. Shrinkage based variance-covariance estimators 

Single index models, such as Market portfolio, are based on a single component, whereas sample 
covariance is referred to be X factor model. The sample covariance model and the single index base 
variance-covariance method are two opposite ends of the same road. Because sample covariance 
matrices are prone to estimate errors, while single index models are prone to specification errors, it may 
be argued that there is need to minimize both types of errors. 

A reliable estimator could be an N factor model, in which case X>N>1. Stein (1956)presented the 
concept of minimization of the quadric loss function. Following the footsteps, Ledoit and Wolf 
(2003a)proposed combining two covariance matrices and determining the optimal weight. Sample 



Glittering covariance estimators: Sophisticated but worthless 

 

480 
 

covariance matrices have been criticized the primarily on the fact that it apply too little and very basic 
structure. The shrinkage covariance estimator can be calculated as: 

Σs = 𝜗(Q) + (1 − 𝜗)Σ𝑠 

Here, 𝜗 denotes to the weighs for the target covariance matrix, Σ𝑠 be the sample covariance matrix 
while Σsrepresents the matrix of covariance after the shrinkage. Ledoit and Wolf (2003a) shrunk sample 
matrix to single index based matrix and Ledoit and Wolf (2003b) shrunk it to constant correlation 
based covariance matrix and Kwan (2011) shrunk the sample covariance matrix to the diagonal 
covariance matrix.  

3.1.6. Portfolio of Estimators 

Following the work of Jagannathan and Ma (2003), Benninga and Disatnik (2007), and Liu and Lin 
(2010) this study also compute and evaluates the performance of these portfolio of estimators.  

 Portfolio composed of Sample, diagonal matrix: This portfolio of covariance estimator is 
composed of equal weighs of sample matrix of variance-covariance and the diagonal matrix of 
variance-covariance.  

𝑃𝑜𝑟𝑡 − 1 =
1

2
(ΣSample.VCM-2 + ΣDiagonal.VCM-2) 

 Portfolio composed of Sample, single index matrix: This portfolio of covariance estimator is 
composed of equal weighs of sample matrix of variance-covariance and single index matrix.  

𝑃𝑜𝑟𝑡 − 2 =
1

2
(ΣSample.VCM-2 + ΣSingle-index.VCM-4) 

 Portfolio composed of Sample, constant correlation covariance matrix: This portfolio of 
covariance estimator is composed of equal weighs of sample matrix of variance-covariance and 
constant correlation based covariance matrix.  

𝑃𝑜𝑟𝑡 − 3 =
1

2
(ΣSample.VCM-2 + ΣOverall-mean.VCM-3) 

 Portfolio composed of Sample, single index & constant correlation matrix: This portfolio of 
covariance estimator is composed of equal weighs of sample matrix of variance-covariance, 
single index covariance matrix and constant correlation based covariance matrix. 

𝑃𝑜𝑟𝑡 − 4 =
1

3
(ΣSample.VCM-2 + ΣSingle-index.VCM-4 + ΣOverall-mean.VCM-3) 

 Portfolio composed of Sample, overall mean & single index matrix: This portfolio of 
covariance estimator is composed of equal weighs of sample matrix of variance-covariance, 
single index covariance matrix, constant correlation based covariance matrix and the diagonal 
matrix of variance-covariance. 

𝑃𝑜𝑟𝑡 − 5 =
1

4
(ΣSample.VCM-2 + ΣSingle-index.VCM-4 + ΣOverall-mean.VCM-3 + ΣDiagonal.VCM-2) 

3.2. Assessment parameters 

In line with the study of Jagannathan and Ma (2003) and Liu and Lin (2010), this study uses two types 
of assessment methods for the comparison of performance of covariance matrix. These methods include 
root mean square error (RMSE) and estimation of minimum variance portfolios (GMVP).  
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To estimate the root mean square errors (RMSE) study uses: 

𝑅𝑀𝑆𝐸 = √
𝑆(𝑆 − 1)

2
∑ ∑ (∅̂𝑖𝑢 − ∅𝑖𝑢)2

𝑆

𝑢=1,𝑗≠𝑠

𝑆

𝑖=1

 

Here, ∅𝑖𝑢 and ∅̂𝑖𝑢  represent the actual and the expected covariance in a portfolio between ithand uth 

asset class. A lower value of RMSE is favored compared to a higher value. As, minimum variance 
portfolios (GMVP) is independent of selection of future return vector hence, study uses risk 
characteristics of GMVP to make comparison among alternative covariance estimating matrices.  

4. Results and discussion 

Table-2 presents value of root mean square error (RMSE) for alternative variance-covariance estimators. 
The table shows pair-wise covariance values and respective out of sample values. A low value of RMSE is 
preferred over a high. A covariance estimator having relatively lower value outperforms competing 
estimators. 

Table-2 RMSE results of alternative covariance matrices 

Sr. Covariance Estimators Results 

 
Traditional variance-covariance estimators 

 
1 Diagonal matrix of variance-covariance (VCM-1) 0.0279 
2 Sample matrix of variance-covariance (VCM-2) 0.0251 

3 Constant correlation matrix of variance-covariance (VCM-3) 0.0196 

 
Factor approach of variance-covariance estimators 

 
4 Single index matrix of variance-covariance (VCM-4) 0.0125 

 
Portfolio of Estimators  

 
5 Portfolio composed of Sample, diagonal matrix (VCM-5) 0.0194 

6 Portfolio composed of Sample, single index matrix (VCM-6) 0.0148 
7 Portfolio composed of Sample, constant correlation covariance matrix (VCM-7) 0.0179 

8 Portfolio composed of Sample, single index &constant correlation matrix (VCM-8) 0.0170 
9 Portfolio composed of Sample, overall mean & single index matrix (VCM-9) 0.0128 

 
Shrinkage based variance-covariance estimators 

 
10 Shrinkage towards diagonal matrix (VCM-10) 0.0250 

11 Shrinkage towards single index matrix (VCM-11) 0.0202 

12 Shrinkage towards constant correlation matrix (VCM-12) 0.0201 

 

Value of RMSE it is evident single factor model of covariance estimator, VCM-4 has consistently 
outperformed all other competing methods. The diagonal matrix of variance-covariance, (VCM-1) and 
sample matrix of variance-covariance, (VCM-2) performed worst among all other covariance estimators. 
The important comparison is between the so-called sophisticated covariance estimators developed by 
Ledoit and Wolf (2003a), Ledoit and Wolf (2003b)and estimators introduced by Jagannathan and Ma 
(2003).On the RMSE, all average of portfolio estimators performed better compared to complex 
shrinkage variance covariance estimators. Looking specifically at the results of shrinkage covariance 
estimators show that (VCM-10) performed worse than (VCM-11) and (VCM-12). 
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Among portfolio of estimators, the performance of Portfolio composed of sample, overall mean & 
single index matrix, (VCM-9) is on top while the performance of portfolio composed of sample, 
diagonal matrix (VCM-5)remain poor. Results also show that constant correlation covariance matrix 
performed relatively better to all shrinkage covariance estimators and other traditional covariance 
matrices however, its performance remain poor compared to both single factor covariance estimator 
(VCM-4) and all competing portfolio of estimators. Overall, the findings suggest that employing a more 
complicated estimator compared to a simpler approach i.e portfolio of estimators provides no 
incremental value to investors. 

Table-3 provides results of risk behavior with respect to standard deviation for MVPs of twelve 
alternative covariance estimators. There are certain inconsistencies in the results RMSE and MVPs.  

Table-3Standard deviation (SD) values of MVP of alternative covariance matrices 

Sr. Covariance Estimators  Results 

 
Traditional variance-covariance estimators 

 
1 Diagonal matrix of variance-covariance (VCM-1) 0.0318 

2 Sample matrix of variance-covariance (VCM-2) 0.0299 

3 Constant correlation matrix of variance-covariance (VCM-3) 0.0285 

 
Factor approach of variance-covariance estimators  

4 Single index matrix of variance-covariance (VCM-4) 0.0224 

 
Portfolio of Estimators   

5 Portfolio composed of Sample, diagonal matrix (VCM-5) 0.0291 

6 Portfolio composed of Sample, single index matrix (VCM-6) 0.0287 

7 Portfolio composed of Sample, constant correlation covariance matrix (VCM-7) 0.0273 

8 Portfolio composed of Sample, single index & constant correlation matrix (VCM-8) 0.0267 

9 Portfolio composed of Sample, overall mean & single index matrix (VCM-9) 0.0286 

 
Shrinkage based variance-covariance estimators  

10 Shrinkage towards diagonal matrix (VCM-10) 0.0290 

11 Shrinkage towards single index matrix (VCM-11) 0.0292 

12 Shrinkage towards constant correlation matrix (VCM-12) 0.0277 

 

The performance of diagonal matrix of variance-covariance (VCM-1) and sample matrix of variance-
covariance (VCM-2) once again remain poor estimators. The performance of constant correlation 
matrix of variance-covariance (VCM-3) is relatively improved, however, the single index matrix of 
variance-covariance (VCM-4) remain top performer on the scale of standard deviation of MVP. 

Results show that portfolio estimators as group outperformed the most complex variance covariance 
estimators. The shrinkage towards diagonal matrix (VCM-10) and shrinkage towards single index matrix 
(VCM-11) performed worst but covariance estimator of shrinkage towards constant correlation matrix 
(VCM-12) performed relatively much improved compared to its the value of RMSE scale as shown in 
Table-3.  

Overall results show that portfolio of estimator as group outperformed the more complex shrinkage 
based covariance matrices. It proves that investors would not get addition benefit from the use of so-
called sophisticated covariance estimators. The MVP's average mean is reported in appendix at Table A-
1 to compare degrees of risk. 
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Table-5 shows the values of Sharpe ratios for MVPs under alternative covariance matrices which are 
used to make comparison of resultant portfolios with respect to their respective MVPs. The risk-
adjusted return for multiple MVP inputs are represented by the Sharpe ratio. A higher Sharpe value is 
preferred over lower.   

Table-4 Sharpe ratio for MVPs of alternative covariance matrices  

Sr. Covariance Estimators  Results 

 
Traditional variance-covariance estimators 

 
1 Diagonal matrix of variance-covariance (VCM-1) 0.11452 

2 Sample matrix of variance-covariance (VCM-2) 0.10347 

3 Constant correlation matrix of variance-covariance (VCM-3) 0.12264 

 
Factor approach of variance-covariance estimators  

4 Single index matrix of variance-covariance (VCM-4) 0.07911 

 
Portfolio of Estimators   

5 Portfolio composed of Sample, diagonal matrix (VCM-5) 0.07726 

6 Portfolio composed of Sample, single index matrix (VCM-6) 0.10742 

7 Portfolio composed of Sample, constant correlation covariance matrix (VCM-7) 0.09187 

8 Portfolio composed of Sample, single index & constant correlation matrix (VCM-8) 0.09883 

9 Portfolio composed of Sample, overall mean & single index matrix (VCM-9) 0.08758 

 
Shrinkage based variance-covariance estimators  

10 Shrinkage towards diagonal matrix (VCM-10) 0.10312 

11 Shrinkage towards single index matrix (VCM-11) 0.08271 

12 Shrinkage towards constant correlation matrix (VCM-12) 0.11043 

 

In Table-5, the constant correlation matrix of variance-covariance (VCM-3) outperformed all other 
competing method of covariance matrices as it has highest Sharpe ratio of 0.12264. The single index 
matrix of variance-covariance (VCM-4) and portfolio composed of Sample, diagonal matrix (VCM-
5)however remain the worst performers. For other portfolio of estimators Portfolio composed of 
Sample, single index matrix (VCM-6) and Portfolio composed of Sample, single index & constant 
correlation matrix (VCM-8) performed comparatively better compared to other portfolio estimators. As 
a result, the findings are mixed: no single estimator consistently beats the others, showing that adopting 
complicated estimators provides no additional value to investors 

5. Conclusion  

This research aims to compute and assess a set of variance-covariance estimators, which is an important 
component of portfolio construction. In the study, twelve variance covariance matrices are estimated 
through data of non-financial sector firms registered on the Pakistan Stock Exchange (PSX). These 
estimators are evaluated for reliability and efficiency employing two different criteria, the RMSE and 
MVP procedures, respectively. For covariance estimators, both assessment parameters, RMSE and MVP 
provide inconsistent findings. The single factor model of covariance estimator, VCM-4 has consistently 
outperformed all other competing methods at both scales of RMSE and standard deviation (SD) of 
MVP. The performance of constant correlation matrix of variance-covariance VCM-3 remain worst on 
RMSE while it shows significant improvement at the scale of standard deviation (SD) of MVP. Overall, 
findings suggest, as group, the equally weighted covariance estimators introduced by Jagannathan and 
Ma (2003) produced much improved results in comparison to all other covariance estimators. Findings 
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are in line with the studies of Husnain, Hassan, and Lamarque (2016)and Nguyen (2018) enforcing 
argument that asset managers or investors would not get any incremental gain by using so called 
sophisticated method of covariance estimator in comparison to simple method proposed by 
Jagannathan and Ma (2003) of portfolio of estimators for non-financial firms of equity market of 
Pakistan. Both individual and institutional investors are recommended to use equally weighted 
portfolio estimators while crafting their investment strategies as more complex covariance estimator fail 
to deliver incremental gain in Pakistani context.  
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Appendix  

Table A-1 Mean values for MVPs for covariance estimators 

 

Sr. Covariance Estimators  Results 

 
Traditional variance-covariance estimators 

 
1 Diagonal matrix of variance-covariance (VCM-1) 0.00232 

2 Sample matrix of variance-covariance (VCM-2) 0.00209 

3 Constant correlation matrix of variance-covariance (VCM-3) 0.00218 

 
Factor approach of variance-covariance estimators  

4 Single index matrix of variance-covariance (VCM-4) 0.00155 

 
Portfolio of Estimators   

5 Portfolio composed of Sample, diagonal matrix (VCM-5) 0.00145 

6 Portfolio composed of Sample, single index matrix (VCM-6) 0.00217 

7 Portfolio composed of Sample, constant correlation covariance matrix (VCM-7) 0.00182 

8 Portfolio composed of Sample, single index & constant correlation matrix (VCM-8) 0.00191 

9 Portfolio composed of Sample, overall mean & single index matrix (VCM-9) 0.00173 

 
Shrinkage based variance-covariance estimators  

10 Shrinkage towards diagonal matrix (VCM-10) 0.00263 

11 Shrinkage towards single index matrix (VCM-11) 0.00164 

12 Shrinkage towards constant correlation matrix (VCM-12) 0.00239 

 


