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ENUMERATION PROBLEM OF RNA SECONDARY
STRUCTURES UNDER NEW REPRESENTATION
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ABSTRACT: Under new representation, the number of RNA secondary structures has been
further studied with the technique of generating function. And according to [7], we get the
combinatorial expression of S*(n, k), then S*(n) is computed. Finally, we give another
simple explicit formulas on S*(n) and S*(n, k).
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1. INTRODUCTION

RNA, DNA and protein are the basic composition composed of lives in the earth
[5]. RNA is an important molecule that performs a wide range of functions in
biological systems. RNA has recently become the center of much attention because
of its catalytic properties [1], leading to an increased interest in obtaining structural
information.

RNA molecules are typically described at three different levels: first, the primary
structure of RNA is a single strand made of the ribonucleotides adenine, cytosine,
guanine and uracil. The secondary level by indicating the bonds between pairs of
nucleotides. These three levels give the topology of the molecule, and its geometric
shape [3].

RNA can fold back on itself. The pairing rules for its sequences in RNA alphabet
is A pairs with U and G pairs with C. In addition, frequently G is thought to pair with
U and G-U base pairs called wobble base pairs. In this paper, we ignore G-U pairs.
The two-dimensional self-pairing is called secondary structure. Here, we are only
concerned with the enumeration problem of RNA secondary structures. Previous
results on the number of different secondary structures of RNA molecules are due to
M.S. Waterman with their coworkers [6, 7, 8, 11, 12] and C.D. Svrtan, et[2].
Particularly important work reported by I.L. Hofacker, P. Schuster, P.F. Stadler is
the recursion for the number of secondary structures with limited length loop [4].
E.A. RØLand discussed the enumeration about the secondary structures with
Pseudoknots [3].
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In this paper, we consider the secondary structures without Pseudoknots.
According to a new representation, we compute the total number of RNA secondary
structure of a given length S*(n), and the explicit expression of S*(n) from the
generating function is obtained. Then we give an asymptotic analysis about S*(n).
Finally, and according to [7], we get the combinatorial expression of S*(n, k), then
S*(n) is computed.

2. THE BASIC DEFINITION

Definition 2.1 ([9] Definition 3.1): Let R = r
1
r

2
 ...r

n
, r

i
 � {A, U) or {G, C}, i = 1, 2,

n..., n be the RNA sequence. The secondary structure is a vertex-labelled graph on
vertices with an adjacency matrix A = (r

i j
) fulfilling: (1) r

i, i+1
 = 1, 1 ��i ��n – 1; (2) If

r
i, k

 = 1, k ��i – 1, r
i
 pairs with r

k
; (3) For each i there is at most a single k ��1, i + 1

such that r
i, k

 = 1; (4) If r
i, j

 = r
k, l 

= 1 and i < k < j, then i < l < j.

We will call an edge (i, j), �i – j��� 1 a bond (or a base pair). A vertex i connected
only to  i – 1 and i + 1 will be called unpaired. A vertex i is said to be interior to the
base pair (k, l) if k < i < l. If, in addition, there is no base pair (p, q) such that k < p <
i < q < l, we will say that i is immediately interior to the base pair (k, l).

Definition 2.2 ([4] Definition 2.2): A stack consists of subsequent base pairs
(p – k, q + k), (p – k + 1, q + k –1), ..., (p, q) such that neither (p – k – 1, q + k + 1) nor
(p + 1, q – 1) is a base pair. k + 1 is the length of the stack. (p – k, q + k) is the
terminal base pair of the stack.

Definition 2.3 ([4] Definition 2.2): A bonding loop consists of a terminal base
pair and unpaired vertices. The number of unpaired vertices is the length of the
bonding loop.

Definition 2.4 ([4] Definition 2.4): A stack [(p, q), ... (p + k, q – k) is called
terminal if p – 1 = 0 or q + 1 = n + 1 or if the two vertices p – 1 and  q + 1 are not
interior to any base pair. The sub-structure enclosed by the terminal base pair (p, q)
of a terminal stack will be called a component of secondary structure. We will say
that a structure on vertices has a terminal base pair if (l, n) is a base pair.

Definition 2.5 ([4] Definition 2.2): A external vertex is an unpaired vertex which
dose not belong to a loop. A collection of adjacent external vertices is called an
external element. If it contains the vertex 1 or n it is a free end, otherwise it is called
joint.

Definition 2.6 ([4]): A internal vertex is an unpaired vertex which is interior to
a base pair.
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Fig. 2: Twelve Kinds Secondary Structures on [3]

We consider the difference of the paired bases, A – U and G – C. Generally, we
ignore the paired bases G – U. The notation (a) is a hairpin; the end of (b) is called
tail; (c) is a stack; (d) is a convex loop; (e) is called a interior loop.

Now, considered the sequence r = r
1
r

2
r

3
, the total possible secondary structures

is 12 kinds. It is shown in Fig. 2.

3. THE RECURSION FORMULAS

Lemma 3.1 ([9]): Let ordered set [n] = {1, 2, ..., n] and S*(n) be the total number of
RNA secondary structures on [n], then S*(n) satisfies the recurrence relation:

1

1

( 1) 2 ( ) ( 1) ( ) 1
n

k

S n S n S k S n k n
�

� � � �

�

� �
� � � � � � �� �

� �
�

with the boundary values S*(0) = 1, S*(1) = 2.

Theorem 3.2: Let 
0

( ) ( ) n

n

x S n x�

�

� � � , then it fulfills the functional equation

2x2�(x)2 – [1 – 2x + 2x2]�(x) + 1 = 0

In [9], let m = 1 in recurrence (2), we can get the desired result.

Fig. 1: The Elements of RNA Secondary Structures
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Theorem 3.3: The explicit expression S*(n) of is

� �

� � � � � �

1 2 1 2

1 2

1 2
1 2

1 4 2 2 2 6 3

2 3 2

4 3 2 1 2 1 2
, 0

1
1 2

2
( ) ,

! ! 2 4 3 !

n v v n v v

n v v

v v n
v v

S n
v v n v v

� � � � � �

� � ��

� � �
�

� � �� �
� �

�
� � ��

where (x)
k
 = x(x – 1) ... (x – k + 1) for any x � � and k � �, (x)

0
 = 1.

To prove this theorem let the generating function of S*(n) be 0
( ) ( ) n

n
y x S n x�

�
� � .

According to Theorem 2, we get the algebraic function satisfied by y(x), that is,
2x2y2 – (1 – 2x + 2x2)y + 1 = 0. By the initial condition, we can deduce that

� �
12

4 3 2
2 2

1 2 2 1
( ) 1 4 8 4

4 4
x x

y x x x x
x x

� �
� � � � �

Computing the above function equation, we get multinomial identity

1 2 1 2

1 2
1 2

2 1
1 4 2 2 2 6 32

2
4 3 2 1 2 1 2

, 0

1 2 2
( ) ( 1) 2

2 4 34
n v v n v v n

v v n
v v

x x
y x x

v v n v vx

� �
� � � � � � � �
� �
� �� �� � � � �

�

� �
� � � �

� � ��

Hence, by virtue of the above identity, we obtain the coefficient of xn, which is
just the explicit value of S*(n). That is,

� � � � � �

1 2 1 2

1 2

1 2
1 2

1 4 2 2 2 6 3

2 3 2

4 3 2 1 2 1 2
, 0

1
( 1) 2

2
( ) .

! ! 2 4 3 !

n v v n v v

n v v

v v n
v v

S n
v v n v v

� � � � � �

� � ��

� � �
�

� � � � �� �
� �

�
� � ��

Lemma 3.4 ([8]): Let 0
( ) n

nn
y x a x

�
� �  be the ordinary generating function of

the sequence a
n
 which is known to have the property a

n
 � 0. let y satisfy the functional

equation F(x, y) = 0, and let r > 0, s > a
0
, be the unique real solutions of the system

F(r, s) = 0, F
y
(r, s) = 0. Then

3
2( )

2 ( )
nx

n
yy

rF r s
a n r

F r s

� ��
�

� �
�
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Theorem 3.5:

� � 3
2

2

1 1 2
( )

4
n

r
S n n r

r

�� �
� �

�
�

.

In the present case, by Theorem 3.2, we can let

F(x, y) = 2x2y2(x) – (1– 2x – 2x2)y(x) + 1,

and we have the following relations

2r2s2 – (1 – 2r + 2r2)s + 1 = 0,

4r2s – (1 – 2r + 2r2)  = 0, r � 0,

then 
1

2
s

r
� . Hence, according to Lemma 4, we get

F
x
(r, s) = 4rs2 – 4rs + 2, F

yy
(r, s) = 4r2.

Then the desired result is obtained.

,n kS�  is the set of secondary structures on n vertices that have exactly k base pairs

and the bonding loop with limited length 1. In [9], let in m = 1 Theorem 5.1.1, we
can get the following result.

Theorem 3.6: Let ,( , )� � n kS n k S , then

2 1

2 0

( , ) 2 ( 1, ) ( 2, 1) ( 1, )
� �

� � � �

� �

�
� � � � � � ��

�
��
n k

j i

S n k S n k S n k S j i

1
( 1, 1 ) , 4, 0 .

2
� �� ��� � � � � � �� � �� �

n
S n j k i n k

with the boundary values S*(n, 0) = 2n, n � 1, S*(0, k) = 0, k � 0.

Theorem 3.7: The generating function of S*(n, k) is denoted by �(x, y), then it
satisfied the following recurrence:

� �22 2 3
2

1
( , ) 1 2 2 1 2 2 16 .

4
x y x x y x x y x y

x y
� �� � � � � � � �� �� �
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From Theorem 3.6, we get

�(x, y) =
0 0

( , ) n k

n k

S n k x y
� �

�

� �
� �  = 

3

0 0 4 0

( , ) ( , )n k n k

n k n k

S n k x y S n k x y
� � �

� �

� � � �

�� � � �

= 2x + (2x)2 + (2x)3 + 2x� + 2x2y��– 2x(2x + 2x)2) + 2x2y�2

= 2x + 2x� + 2x2y� + 2x2y�2

From which we get the following identity,

2x2y�2 – [1 – 2x – 2x2y]��+ 2x =  0.

By the initial condition, we can get the desired result.

Theorem 3.8:

1 2 3

1 2
2 3

1 2 3

2 2

2 2
2 1 1 2 2 3 2 3

, , 0

1
( , ) (2) ( 2) 2

2 2 2

n k v v vn k

v v n k
v v k
v v v

S n k
v n k v v k v v v v

� �
� �
� �� � � �� � � �
� �

� � � � �� �� � � �
�

� �
� � � � �

�

According to Theorem 3.7, �(x, y) can be written in the form

� �
1
2

2
22 3

2 2

1 2 2 1
( , ) 1 2 2 16 ,

4 4
x x y

x y x x y x y
x y x y

� � � �� � � � � �� �� �

We only need decompose the part

� �
1
222 3

2

1
( , ) 1 2 2 16 .

4
g x y x x y x y

x y
� �� � � � �� �� �

By virtue of multinomial identity, we have

g(x, y) = � � � � � � � � � �1 3 4 52

1 2 3 4 5

2 2 3 4 2
2

1 2 3 4 5

1
1

4 4 4 8 42
4

v v v vv

v v v v v

x x x y x y x y
x y

v v v v v
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� �� �
� �
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=
1 4 5

1 4 5

1 2 2 1 2 1

1 1 4 4 5 4 5

1
2 ( 2)2

2 2 2

n k n k v v v n k

v v v

x y
v n v v kk v v v v

� �
� �
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� �
� �
� �� �
� �
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=
1 2 3

1 2

2 3
1 2 3

2 2

2 2
1 1 2 2 3 2 32
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�

The coefficient of xnyk in the above recurrence is the expected result.

Theorem 3.9:

1
2

0

( ) ( , ).

n

k

S n S n k

�� �
� �� �

� �

�

� �

It is much easier to compute S*(n, k) than S*(n). In [7], Waterman had been
constructed a bijection between �

n, k
 to one set of tree denoted by �

n, k
. Let s*(n, k) =

��
n, k

� and t(n, k) = ��
n, k

�. Now we give another simple explicit formula on S*(n) and
S*(n, k).

Lemma 3.10 ([7] Proposition 2.1): For all n, k ��1, there exists a bijection

��: �
n+k–2, k–1

 ���
n, k

.

In [7], the explicit expression about s*(n, k) is given according to Lemma 3.10. It
is shown as the following Lemma.

Lemma 3.11 ([7] Theorem 2.2)]: The number of secondary structures over a
sequence of length n having exactly pairs is given by

11
( , )

1 1

n k n k
s n k

k k k
� � � �� �� �

� � �� �� �� �� �

for n, k � 0.

In this paper, we consider the difference between A – G base pairs and G – U
base pairs. By the construction of the �

n, k
, we can dye two colors in each branch of

the tree. Then we get the combinatoric expression of S*(n, k).

Theorem 3.12:

11
( , ) 2 .

1 1
n k n k n k

S n k
k k k

� � � � �� �� �
� � �� �� �� �� �

The proof is omitted.
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Corollary 3.13:

1
2

0

11
( ) 2 .

1 1

n

n k

k

n k n k
S n

k k k

�

� �

�

� � �� �� �
� � �� �� �� �� �
�

By virtue of Theorem 3.9. and Theorem 3.12., we can easily get the result.
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