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DIRECTED ROMAN DOMINATION IN DIGRAPHS

M. Kamaraj & V. Hemalatha

ABSTRACT: A directed Roman dominating function on a digraph D = (V, E) is a function
f : V → {0, 1, 2} satisfying the condition that for every vertex u for which f (u) = 0, there is
at least one vertex n for which f (n) = 2 and (n, u) ∈ E. The weight of a directed Roman
dominating function is the value f (V) = Σu ∈ V

f (u). The minimum weight of a directed
Roman dominating function of a directed graph G is called directed Roman dominating
number of γ

d
(D). In this paper, we study the graph theoretic properties of this variant γ

d
(D)

of the directed Roman dominating number for paths of a directed graph.

KEYWORDS AND PHRASES: Graph theory, Domination, Digraphs, Directed domination.

1. INTRODUCTION

Graph: A graph G is a finite nonempty set of objects called vertices together with a
set of unordered pairs of distinct vertices of G called edges. The vertex set and the
edge set of G are denoted by V (G) and E (G) respectively. If e = {u, n} is an edge we
write e = uν we say that e joints the vertices u and v, u and v are incident with e. If
e

1
 and e

2
 are distinct edges of G incident with a common vertex then e

1
 and e

2
 are

said to be adjacent edges. The number of vertices in G is called the order of G and
the number of edges in G is called the size of G. A graph of order n and size m is
called a (n, m) graph A graph is trivial if its vertex set is a singleton.

A vertex u is called a neighbour of a vertex v in G, if uv is an edge of G. The set
of all neighbours of v is the open neighbourhood of  and is denoted by N (v); the set
N [v] = N (v) ∪ {v} is the closed neighbourhood of v in G.

Let S ⊆ V, then define N (S) =
u ∈ S

N (u) and N [S] =
u ∈ S

N [u] if (u, v) ∈ E then
u is said to be adjacent to v and ν is said to be adjacent from u.

Digraph: A graph D = (V, E) is said to be digraph if E is subset of {(u, v); u,
∈ V, u ≠ ). Some times we done V (D) and E (D) instead of V and E respectively to

stress the digraph D.

Representation. An edge (u, ) ∈ E is represents as u → v

If (u, ) ∈ E and ( , u) ∈ E then it is represent as u →
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104 M. KAMARAJ & V. HEMALATHA

Here V (D) = {u, , w, u} and E (D) = {(u, x), (x, u), ( , u), (v, w), (x, w)}.

Notations: d
0
( ) denotes the out degree of , d

i
( ) denotes the indegree of d

i0
( )

denotes the in-out degree of v. For example in the above example = 1. p and q denotes

| V | and | E | respectively.
0
(D) and

0
(D) denotes minimum and maximum out

degree of D respectively.

We use the following notations.

N
0
(v) = {u ∈ V : ( , u) ∈ E}

N
0
[v] = { } ∪ N

0
( ),

N
i
(v) = {u ∈ V : (u, ) ∈ E},

N
i
[v] = { } ∪ N

i
( )

N
i0
(v) = {u ∈ V : (u, ) ∈ E and ( , u) ∈ E},

N
i0
[v] = { } ∪ N

i0
( ).

Underlying Graph: Let D be a digraph. The underlying graph G (D) of D is the
undirected graph obtained from D by removing the directions. For example the
underlying graph of the digraph in Example 1 is

Example 1:

Proposition 1: d
G
( ) = d

i
( ) + d

0
( ) – d

i0
 ( ) where G is the underlying graph of

D. d
0
( ) = |N0

( ) | d
i
( ) = |Ni

( ) | and d
i0

( ) = |Ni0
( ) |.

Proof: Proof is obvious.

Domination Number: The domination number of G is the minimum cardinality
taken overall all dominating set in G and is denoted by γ (G).
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DIRECTED ROMAN DOMINATION IN DIGRAPHS 105

Independence Number: Independence number of a graph G is the maximum
cardinality of an independent set of G and is denoted by β (G).

Roman Dominating Number: Let G be an undirected graph. A function
f = (V

0
, V

1
, V

2
) on G is a Roman dominating function (RDF) if V

2
V

0
 where  means

that the set V
2
 dominates the set V

0
 (i.e.) V

0
⊆ N (V

2
). The weight of f is

f (v) = Σ ∈ V
f (v) = 2n

2
 + n

1
, where n

i
 = | V

i | for i = 0, 1, 2. The Roman domination
number denoted by γ

R
(G) equals the minimum weight of an RDF of G and we say

that a function f = (V
0
, V

1
, V

2
) is a γ

R
 function if it is an RDF and f ( ) = γ

R
(G).

Directed Dominating Number: Led D = (V, E) be a digraph. A set S ⊆ V is
called a directed dominating set in D if N

0
[S] = V. The directed dominating number

γ
—

(
——

G
—

)
—

 is the minimum cardinality of a directed dominating set in D and a directed
dominating set S of minimum cardinality is called a γ— set of D.

2. DIRECTED ROMAN DOMINATING NUMBER

A directed Roman dominating function (abbreviated by dRDF) in a directed graph
D = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that for every vertex
u for which f (u) = 0 there is at least one vertex  for which f ( ) = 2 and ( , u) ∈ E.
The weight of a directed Roman dominating function is the value f (V) = Σu ∈ V

f (u).
The minimum weight of a directed Roman dominating function of a directed graph D
is called directed Roman dominating number and it is denoted by γ

d
(G).

Let ∈ S ⊆ V (D). Vertex u is called a diprivate neighbour of v with respect to S
(denoted by u is an S – dpn of ), if ( , u) ∈ E (D) (x, u) ∉ E for all other x ∈ S. The
set dpn ( , S) = N

0
[n] – N

0
[S – { }] of all S-dpns of  is called the diprivate

neighbourhood set of  with respect to S. The set S is said to be di-irredundant it for
every ∈ S dpn ( , S) ≠ Ø. A S-dpn u of  is said to be external if u ∉ S.

Independent Vertex: A vertex  is said to be independent with respect to a
dRDF f if f ( ) ≠ 0.

Uniformly Independent Vertex: A vertex  is said to be uniformly independent
if f ( ) ≠ 0 for all dRDF.

Proposition 2: If d
i
( ) = 0 if and only if  is uniformly independent vertex.

Proof: Proof is obvious.

Definition: A dRDF f with f (V ) = γ
d
(D) is called γ

d
 function.

Example 2: Define f (x) = 2, f ( ) = f (w) = f (y) = 0, f (u) = 1, obviously this
function f is a γ

d
 function. For if, f is not γ

d
 function, let g be a γ

d
 function. It is

obvious that x is uniformly independent vertex. If g (x) = 1, then g (y) must be 1.
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106 M. KAMARAJ & V. HEMALATHA

Case 1: f (a) = 1.

f ({b, i, h} ≥ 2.

Similarly f ({c, g, f }) ≥ 2. f ({d, e}) ≥ 2.

Therefore f (V) ≥ 2 + 2 + 2 + 1 = 7.

Case 2: f (a) = 2.

f ({b, i, h}) ≥ 2.

Similarly f ({c, g, f }) ≥ 2. f ({d, e}) ≥ 1.

Therefore f (V)) ≥ 2 + 2 + 2 + 1 = 7.

Define g (a) = 2, g (b) = g (c) = g (d) = 0 and g (i) = g (h) = g (g) = g (e) = g ( f ) = 1,
f (V) = 7.

Therefore γ
d
(D) = 7.

Representation of a Digraph in Matrix Form: Let D be a (p, q) digraph. We
define a square matrix m (D) = m (m

uv
) of order p as follows:

m
uv

 =
1 if ( , )

0 if ( , )

u E

u E

∈
 ∉

Now, g (N
0
[u]) ≥ 2. Therefore g (V) ≥ 4. This is a contraction to minimality of g.

Therefore f is the γ
d
 function.

Example 3: Here, γ
d
(D) = 7. For a is uniformly independent vertex. Therefore

f (a) ≠ 0 for all dRDF. Let f be any arbitrary dRDF.
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DIRECTED ROMAN DOMINATION IN DIGRAPHS 107

For example, m (D) of the Example 2 is

0 1 0 0 1

1 0 0 0 0

0 1 0 1 1

0 0 0 0 0

0 0 0 0

 
 
 
 
 
 
  

Properties of m (D).

Property 1: D ~= G (D) ⇔ m (D) is a symmetric matrix.

Let N (D) and M (D) denotes the number of dRD functions and gd functions of
D. Consider the set S (D) = { f : f : V (D) → {0, 1, 2}} obviously |S (D) | = 3p, where

|S (D) | denotes the number of elements in S (D). Let R (D) = { f ∈ S (D) : f is dRDF}.
N (D) = |R (D) |. It is obvious that R (D) ⊆ S (D). Therefore N (D) ≤ 3p.

Theorem 2: N
d
(D) ≤ 3p – 2p + 1.

Proof: Consider the set A = { f : V (D) → {0, 1}. It is obvious that |A | = 2p. For
f ∈ A if f (u) = 0 for at least one u, then f is not a dRDF. Therefore f (u) = 1 for all
u ∈ V (D) is the only dRDF in A. Therefore, we find that there are 2p – 1 functions
which are not dRDF. Therefore N

d
(D) ≤ 3p – 2p + 1.

Algorithm to define a dRDF

Step 1: Enter the matrix m (D)

Step 2: Choose the vertex  with d
0
( ) = ∆

0
(D).

That is row with maximum number of 1’s.

Step 3: Define f ( ) = 2 and f (u) = 0 for all u ∈ N
0
( ).

Step 4: Delete all the rows and columns corresponding to the vertices at which
f was defined. We get a reduced matrix.

Step 5: Case (i) If f is defined for all the vertices. Go to Step 7.

Case (ii) D = D – {  : f ( ) is defined}

Step 6: Go to Step 1.

Step 7: End.
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108 M. KAMARAJ & V. HEMALATHA

The function defined using the above algorithm is

f (a) = 2, f (b) = 0, f (c) = 0,

f (d) = 0, f (e) = f ( f ) = f (g) = f (h) = f (i) = f ( j) = 1,

f (V) = 8.

Now define

g(b) = g(c) = g(d) = 2,

g(a) = 1

g(x) = 0 if x ∈ {a, b, c, d}.

In the above graph g(V) = 7. Therefore, f (V) is not a γ
d
 functions.

Theorem 3: For any digraph D, γ
R
 (G(D)) ≤ γ

d
(D) £ n + 1 – ∆

0
(D).

Proof: Let f = (V
0
, V

1
, V

2
) be a γ

d
 functions of D. Clearly, f is a Roman dominating

function of G(D). Therefore, γ
R
 (G(D)) < γ

d
(D). Choose the vertex such that

∆
0
 (D) = d

0
( ). Define f ( ) = 2 and f (u) = 0 for all u ∈ N

0
( ). Define f (x) = 1

for all other vertices. Obviously f is a dRDF and f ( ) = n – ∆
0
(D) + 1. Therefore,

γ
d
(D) ≤ n + 1 – ∆

0
(D).

Theorem 4: γ
d
(D) = γ

R
, (G(D)) if and only if every γ

d
 function of D is a γ

R

function of G(D).

Proof: Proof is obvious.

Theorem 5: If f is dRDF in D, S = {u ∈ V(D) : f (u) = 2} is a directed dominating
set in D.

Proof: Let u ∈ V. Suppose that f (u) = 0 then by definition there is a vertex ∈ V
such that ( , u) ∈ E and f (u) = 2. Therefore N

0
[S] = V.

The dRDF defined using the above algorithm may not be γ
d
 functions, for example
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DIRECTED ROMAN DOMINATION IN DIGRAPHS 109

Let f be a dRDF function of D and let (V
0
, V

1
, V

2
) be the ordered partition of V

induced by f, where V
i
 = { ∈ V/ f ( ) = i} and |Vi | = n

i
, for i = 0, 1, 2. There exists a

one to one correspondence between the functions f : V → {0, 1, 2} and the ordered
partitions (V

0
, V

1
, V

2
) of V. Therefore one can write f = (V

0
, V

1
, V

2
).

A function f = (V
0
, V

1
, V

2
) is a directed Roman dominating function (dRDF) if

V
0

⊆ N
0
(

2
). The weight of f is f ( ) = Σ ∈ V

f ( ) = 2n
2
 + n

1
.

Proposition 6: For any digraph D of order n, γ (G(D)) = γ
R
(G(D))) = γ

d
(D) if and

only if D = K
—

n

—
.

Proof: It is obvious that if D = K
—

n

—
 then G(D) = D and γ (D) = γ

R
(D) = γ

d
(D) = n.

Conversely, let f = (V
0
, V

1
, V

2
) be a γ

d
 function γ

d
(D) = | V

1 | + 2| V
2 |, γ

R
(G(D)) ≤

|V1 | + 2 |V2 |. But given that γ
R
(G(D)) = |V1 | + 2|V2 | = γ (G(D)), γ (G(D)) ≤ |V1 | + |V2 |

≤ |V1 | + 2 |V2 | = γ
d
(D).

Therefore,

|V1 | + |V2 | = |V1 | + 2 |V2 |
|V2 | = 0

|V0 | = 0

g
d
(D) = |V1 | = |V | = n,

g
d
(G(D) ) = n,

G(D) = K
—

n

—
.

Therefore

D = K
—

n

—
.

Proposition 7: Let f = (V
0
, V

1
, V

2
) be any g

d
 function. Then

(a) ∆
0
(D(V

1
)) = 1, where D(V

1
) is the subgraph induced by V

1
.

(b) (V
2

× V
1
) ∩ E (D) = Ø.

(c) For all u ∈ V
0
, |N0

(u) ∩ V
1 | ≤ 2.

(d) V
2
 is a directed dominating set of D (V

0
∪ V

1
).

(e) Let D
1
 = D

1
(V

0
∪ V

2
) the digraph generated by V

0
∪ V

2
from D. Let ∈ V

2

and N
i
( ) ∩ V

2
≠ Ø. Then  has at least two V

2
 – diprivate neighbourhood

in V
0
.

(f) Let ∈V
2
 and has precisely one external V

2
-dpn, say w ∈ V

0
 and (w, ) ∈E(D)

then N
0
(w) ∩ V

1
 = Ø.
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110 M. KAMARAJ & V. HEMALATHA

(g) k
1
 = |{u ∈ V

2
 : |Ni

( ) ∩ V
2 | ≠ Ø} | and c = |{w ∈ V

0
 : |Ni

(w) ∩ V
2 | > 2} |.

Then n
0

≥ n
2
 + k

1
 + c.

Proof:

(a) Suppose ∆
0
(D(V

1
)) > 1, there is at least one vertex ∈ V

1
 such that

{
1
,

2
,

3
, …,

m
} ⊆ N

0
( ) ∩ V

1
 with m > 1. Now, define g( ) = 2, g( i) = 0

for all i = 1, 2, ..., m and g( ) < f ( ), which is a contradiction. Then for
∆

0
(D(V

1
)) = 1.

(b) Suppose (V
2

× V
1
) ∩ E(D) ≠ Ø. Let (

2
,

1
) ∈ E(D) with

2
∈ V

2
 and

1
∈ V

1
. Now define g(

1
) = 0, g(u) = f (u) for all u ≠

1
 certainly g is a γ

d

function g(V) = f (V) – 1, which is a contradiction.

(c) Suppose there exists some u ∈ V
0
 and |N0

(u) ∩ V
1 | ≥ 3. Then there exists

{u
1
, u

2
, u

3
, …, u

m
} ⊆ N

0
(u) ∩ V

1
, where m ≥ 3. Now define g(u) = 2, g(u

i
) = 0.

Certainly g is a γ
d
 function and g(V) < f (V), which is a contradiction.

Therefore, |N0
(u) ∩ V

1 | ≤ 2.

(d) Any vertex ∈ D [V
0

∪ V
2
] is either in V

2
 or it is adjacent from a vertex in

V
2
. Therefore V

2
 is a directed dominating set of D (V

0
∪ V

1
).

(e) Suppose there is only one V
2
-diprivate neighbourhood in V

0
, say w. Let

u ∈ N
i
( ) ∩ V

2
. Now from a new function g such that g( ) = 0 and g(w) = 1,

for all other vertices the value of g is equal to the value of f then g is a
dRDF with smaller weight than f, which is a contradiction.

(f) Suppose N
0
(w) ∩ V

1
≠ Ø. Define g( ) = 0, g(y) = 0 for every y ∈ N

0
(w) ∩ V

1
,

g(w) = 2 and g(x) = 0. For any other x ∈ V(D), weight of g is smaller than
f, which is contradiction.

(g) Let k
0
 = |{ ∈ V

2
 : |Ni

( ) ∩ V
2 | = Ø} |. Then k

0
 + k

1
 = n

2
 by (e) n

0
≥ k

0
 + 2k

1
 + c

= n
2
 + k

1
 + c.

Theorem 8:

γ
d
(D) = |V(D) | if and only if ∆

0
(D) = 1.

Proof: Let g
d
(D) = n = | V |. Using Theorem 4, γ

d
(D) ≤ n + 1 – ∆

0
(D) that is

n ≤ n + 1 – ∆
0
(D), that is ∆

0
(D) ≤ 1. Therefore ∆

0
(D) = 1. Conversely, assume ∆

0
(D) = 1.

Then there is no reducing vertex in V. Therefore γ
d
(D) = n.

3. DIRECTED ROMAN DOMINATING NUMBER FOR PATHS

To find the γ
d
(D), where D is a dipath. Let D be a dipath. Define T(D) = { ∈ V(D) :

d
0
( ) = 2}.
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DIRECTED ROMAN DOMINATION IN DIGRAPHS 111

Definition: A vertex u ∈ T (D) is said to be independent from  if d (u, ) ≥ 3.

Proposition 9: Let
1
,

2
, …,

r
 be the vertices in T (D) and

i
 is independent

from
j
 for every i ≠ j. Then γ

d
(D) ≤ n – r.

Proof: Define f (
i
) = 2 for every i = 1, 2, 3, …, r and f (u) = 0 for every vertex u,

which is adjacent to any one of
i
. And also define, f (x) = 1 for all other vertices in V.

Now, f (V) = n – r and f is a dRDF. Therefore γ
d
(D) ≤ n – r.

Let P̂
n
 be the collection of dipaths of length n. Obviously | P̂n | = 3n.

Proposition 10: If D ∈ P̂
1
 then γ

d
(D) = 2.

Proof: The proof is obvious.

Proposition 11: Let D ∈ P̂
2
 and G(D) =

0
,

1
,

2
.

Then

γ
d
(D) = 0 12 if ( ) 2,

3 otherwise.

d =



Proof: The proof is obvious.

Definition: Let Q̂
n
∈ P̂

n
, then define extension of Q̂

n
 = {D ∈ P̂

n
 + 1: D – {

n + 1
} ∈ Q̂

n
}.

It is denoted by T (Q̂
n
). Obviously |T (Q̂

n
)| = 3 | (Q̂n

) |.
Define

A
1
(Q̂

n
) = {D ∈ Q̂

n
 : d

i
(

n
) = 0}

A
2
(Q̂

n
) = {D ∈ Q̂

n
 : d

i0
(

n
) = 1}

A
3
(Q̂

n
) = {D ∈ Q̂

n
 : d

0
(

n
) = 0}

|Ai
(Q̂

n
) | = a

i
(Q̂

n
) for all i = 1, 2, 3

B
1
(Q̂

n
) | = {D ∈ Q̂

n
: d

0
(

n – 1
) | ≠ 2}

B
2
(Q̂

n
) | = {D ∈ Q̂

n
: d

0
(

n – 1
) | = 2}

|Bi
(Q̂

n
) | = a

i
(Q̂

n
) for i = 1,2

We can obviously observe the following Q̂
n
= B

1
(Q̂

n
) ∪ B

2
(Q̂

n
)

B
1
(Q̂

n
) ∩ B

2
(Q̂

n
) = Ø,

Q̂
n
 = 3

i = 1
A

i
(Q̂

n
)

A
i
(Q̂

n
) ∩ A

j
(Q̂

n
) = Ø for all i ≠ j,

Σ3
i = 1

a
i
(Q̂

n
) = Σ2

i = 1
b

i
(Q̂

n
) = | Q̂n |.
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Theorem 12:

(i) a
i
(B

1
(T (Q̂

n
))) =Σ3

i = 1
a

i
(Q̂

n
) = | Q̂n |.

(ii) a
2
(B

1
(T (Q̂

n
))) = a

3
(B

1
(T (Q̂

n
))) = a

3
(Q̂

n
).

(iii) a
1
(B

2
(T (Q̂

n
))) = 0.

(iv) a
2
(B

2
(T (Q̂

n
))) = a

3
(B

2
(T (Q̂

n
))) = a

1
(Q̂

n
) + a

2
(Q̂

n
).

Proof: Let D ∈ Q̂
n

and G(D) =
0 1 2 3

, …,
n
. Form a new digraph D

1
, by

adjoining a new vertex
n + 1

 such that G(D
1
) =

0 1 2 3
…..

n
,

n + 1
 and

E(D
1
) = E(D) ∪ {(

n + 1
,

n
)}. Certainly D

1
∈ A

1
(B

1
(T (Q̂

n
))) therefore there is a one to

one correspondence between D
1

∈ A
1
 (B

1
(T (Q̂

n
))) and D ∈ Q̂

n
. Therefore,

a
i
(B

1
(T (Q̂

n
))) = | Q̂n |.

(ii) Let D ∈ A
3
(Q̂

n
) and G(D) =

0 1 3
 …

n
. Form new digraphs D

1
 and D

2
, by

adjoining a new vertex
n + 1

 such that G(D
1
) = G(D

2
) =

0 1 2
…

n n + 1
 and

E(D
1
) = E(D) ∪ {(

n + 1
,

n
), (

n
,

n + 1
)} and E(D

2
) = E(D) ∪ {(

n
,

n + 1
)}.

Certainly D
1
∈ A

2
(B

1
(T (Q̂

n
))) and D

2
∈ A

3
 (B

1
(T (Q̂

n
))). Therefore there is a

one to one correspondence between D
1

∈ A
2
(B

1
(T (Q̂

n
))) and D ∈ A

3
(Q̂

n
)

also between D
2
∈ A

3
(B

1
(T (Q̂

n
)))) and D ∈ A

3
(Q̂

n
). Therefore a

2
(B

1
(T (Q̂

n
)))

= a
3
(B

1
(T (Q̂

n
))) = a

3
(Q̂

n
).

(iii) There is no paths in B
2
(T (Q̂

n
)) with d

i
(

n + 1
) = 0. Therefore

a
1
(B

2
(Q̂

n + 1
)) = 0.

(iv) Let D ∈ A
1
(Q̂

n
) ∪ A

2
(Q̂

n
). Form new digraphs D

1
 and D

2
, by adjoining a

new vertex
n + 1

 such that G(D
1
) = G(D

2
) =

0 1 2 3
…

n n + 1
 and E(D

1
) =

E(D) ∪ {(
n + 1

,
n
) (

n
,

n + 1
)} and E(D

2
) = E(D) ∪ {(

n
,

n + 1
)}. Certainly

D
1

∈ A
2
 (B

2
(T (Q̂

n
))) and D

2
∈ A

3
(B

2
(T (Q̂

n
))). There is a one to one

correspondence between D
2

∈ A
3
 (B

2
(T (Q̂

n
))) and D ∈ A

1
(Q̂

n
) ∪ A

2
(Q̂

n
).

Hence, a
2
(B

2
(T (Q̂

n
))) = a

3
(B

2
(T (Q̂

n
))) = a

1
(Q̂

n
) + a

2
(Q̂

n
).

Lemma 13: Let Q̂
n
 = {D ∈ P̂

n
 ; ∆

0
(D) = 1}. Then a

2
(Q̂

n
) = a

3
(Q̂

n
) = 1.

Proof: We will prove by induction, when n = 1, the lemma is obviously true.
Assume the induction hypothesis for Q̂

n – 1
. By induction hypotheses for a

2
(Q̂

n – 1
) =

a
3
(Q̂

n – 1
) = 1 by the Theorem 12.

a
2
(B

1
(T (Q̂

n – 1
))) = a

3
(B

1
(T (Q̂

n – 1
))) = a

3
(Q̂

n – 1
) = 1. (1)

Claim. B
1
(T (Q̂

n – 1
)) = Q̂

n
.
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B
1
(T (Q̂

n – 1
)) ⊆ Q̂

n
 is obvious. Let D ∈ Q̂

n
, and G(D) =

0 1 2
 …

n – 1 n
. Let

D
1
 = D – {

n
}. Obviously D

1
∈ Q̂

n – 1
. Therefore D ∈ T (Q̂

n – 1
) and D ∈ B

1
(T (Q̂

n – 1
)

since ∆
0
(D) = 1.

Therefore, Equation (1) becomes a
2
(Q̂

n
) = a

3
(Q̂

n
) = 1.

Theorem 14: There are 2n + 1 dipaths with length n and ∆
0
(D) = 1.

Proof: Let D ∈ P̂
n
 and G(D) =

0 1 2
 …

n – 1 n
. Let Q̂

n
 = {D ∈ P̂

n
 : ∆

0
(D) = 1}.

We will prove the theorem by induction on n. It is obvious that there are three dipaths
of length 1 and ∆

0
(D) = 1. Assume the induction hypothesis for Q̂

n – 1
. By induction

hypothesis there are 2n – 1 dipaths in Q̂
n – 1

.

That is | Q̂n – 1 | = 2n – 1. By the above theorem a
1
(B

1
(T (Q̂

n – 1
))) = | Q̂n – 1 | = 2n – 1,

a
2
(B

1
(T (Q̂

n – 1
))) = a

3
(B

1
(T (Q̂

n – 1
))) = a

3
(Q̂

n – 1
). By the Lemma 13 a

2
(B

1
(T (Q̂

n – 1
))) =

a
3
(B

1
(T (Q̂

n – 1
))) = 1, | Q̂n – 1 | = 2n – 1 + 1 + 1 = 2n + 1. Hence proving the theorem.

Proposition 15: Let n ≥ 2, fix r so that, 1 ≤ r ≤ n – 1, and define F
r, n

 = {D ∈ P̂
n

: d
0
(

r
) = 2 and d

0
(

i
) = 1 for all i ≠ r}. Then a

3
(F

r, n
) = 2r.

Proof: We will prove by induction on n. Let n = 2, then the following is true.

A
3
((F

r, 2
)) =

Therefore a
3
((F

r, 2
)) = 2 = 2r since r = 1.

Assume induction hypothesis for n – 1. Let D ∈ F
r, n

.

Case 1: Let r = n – 1. Then clearly D – {
n
} ∈ {x ∈ P̂

n – 1
 : ∆

0
(x) = 1}.

Let Q̂
n – 1

 = {x ∈ P̂
n – 1

 : ∆
0
(x) = 1}. Using the Theorem 14, we have

| Q̂n – 1 | = 2n – 1. By Lemma 13 a
2
(Q̂

n – 1
) = a

3
(Q̂

n – 1
) = 1. Therefore

a
3
(F

r, n
) = a

3
(B

2
(T (

n-1
)))

= a
3
(Q̂

n – 1
) + a

2
(Q̂

n – 1
) (using theorem 14)

= 2n – 3 + 1

= 2n – 2

= 2 (n – 1)

= 2r.

Case 2: Let 1 < r < n – 1. By induction hypotheses a
3
(F

r, n – 1
) = 2r. But a

3
(F

r, n
)

= a
3
(F

r, n – 1
) = a

3
(Q̂

n – 1
). Therefore a

3
(F

r, n
) = 2r. Hence proving the

proposition.
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Proposition 16: Let n ≥ 2 and r is fixed, 1 ≤ r ≤ n – 1 define F
r, n

 = {D ∈ P̂
n
 : d

0
(

r
) = 2

and d
0
(

i
) ≠ 2 for all i ≠ r}, |Fr, n | = 4r (n – r).

Proof: We will prove by induction on n.

F
r, 2

 =

Therefore,

|Fr, 2 | = 4

= 4.1

= 4r (n – r), where r = 1, n = 2.

Assume induction hypothesis for n – 1. Let D ∈ F
r, n

.

Case 1: r = n – 1.

Then D – {
n
} ∈ {x ∈ P̂

n – 1
 : ∆

0
(x) = 1}. Let Q̂

n – 1
 = {x ∈ P̂

n – 1
 : ∆

0
(x) = 1},

then it is obvious that F
r, n

 = B
2
(T (Q̂

n – 1
)).

Now,

|Fr, n | = b
2
(T (Q̂

n – 1
))

= a
1
(B

2
(T (Q̂

n – 1
))) + a

2
(B

2
(T (Q̂

n – 1
))) + a

3
(B

2
(T (Q̂

n – 1
)))

= 0 + a
1
(Q̂

n – 1
) + a

2
(Q̂

n – 1
) + a

1
(Q̂

n – 1
) + a

2
(Q̂

n – 1
) (using theorem 12)

= 2 (a
1
(Q̂

n – 1
) + a

2
(Q̂

n – 1
))

= 2 | Q̂
n – 1

| – a
3
(Q̂

n – 1
))

= 2 (2n – 1 – 1) (by theorem 14)

= 2 (2n – 2)

= 4 (n – 1)

= 4r (n – r), since r = n – 1.

Case 2: r < n – 1.

Now, clearly, D – {
n
} ∈ F

r, n – 1
. By induction hypothesis.

Let Q̂
n – 1

 = F
r, n – 1

, | F
r, n – 1 | = 4r (n – 1 – r). It is obvious that F

r, n
 =

B
1
(T (Q̂

n – 1
)). Therefore,
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|Fr, n | = b
1
(T (Q̂

n – 1
))

= |B1
(T (Q̂

n – 1
) |

= a
1
(B

1
(T (Q̂

n – 1
))) + a

2
(B

1
(T (Q̂

n – 1
))) + a

3
(B

1
(T (Q̂

n – 1
)))

= | Q̂n – 1 | + a
3
(Q̂

n – 1
) + a

3
(Q̂

n – 1
) (by theorem 12)

= |Fr, n – 1 | + 2a
3
(F

r, n – 1
)

= 4r (n – 1 – r) + 2.2r

= 4r (n – 1 – r) + 4r

= 4r (n – 1 – r + 1)

= 4r (n – r).

Hence proving the proposition.

Proposition 17: Q̂
n
 = {D ∈ P̂

n
 : γ

d
(D) = n – 1} | Q̂n | = 2 (n + 1) n (n – 1)/3.

Proof: Let n ≥ 2 and r is fixed, 1 ≤ r ≤ n – 1, define F
r, n

 = {D ∈ P̂
n
 : d

0
(

r
) = 2 and

d
0
(

i
) ≠ 2 for all i ≠ r}. Clearly,

| Q̂n | =
1

,1

n
r nr

F
−
=∑

=
1

1
4 ( )

n

r
r n r

−
= −∑

=
1 2
1

4 4
n

r
rn r

−
= −∑

= { }1 1 2
1 1

4
n n

r r
nr r

− −
= =−∑ ∑

= 4 {(nn (n – 1)/2) – (n (n – 1) (2n – 1)/6)}

= (2nn (n – 1)) – (2n (n – 1) (2n – 1)/3)

= 2n (n = 1) {(n – (2n – 1)/3)}

= 2n (n – 1) {(3n – 2n + 1)/3}

= 2n (n – 1) ((n + 1)/3)

| Q̂n | = 2 (n + 1) n (n – 1)/3.

Hence proving the proposition.
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4. OPEN PROBLEMS

1. How many γ
d
 functions for a digraph D?

2. How will you check a given dRD function is whether γ
d
 function or not?

3. How many D ∈ P̂
n
 with γ

d
(D) = n – r.
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