DIRECTED ROMAN DOMINATION IN DIGRAPHS

M. Kamaraj & V. Hemalatha

ABSTRACT: A directed Roman dominating function on a digraph D = (V, E) is a function f: V \rightarrow {0, 1, 2} satisfying the condition that for every vertex u for which f(u) = 0, there is at least one vertex n for which f(n) = 2 and (n, u) \in E. The weight of a directed Roman dominating function is the value f(V) = $\sum_{u \in V} f(u)$. The minimum weight of a directed Roman dominating function of a directed graph G is called directed Roman dominating number of $\gamma_d(D)$. In this paper, we study the graph theoretic properties of this variant $\gamma_d(D)$ of the directed Roman dominating number for paths of a directed graph.

KEYWORDS AND PHRASES: Graph theory, Domination, Digraphs, Directed domination.

1. INTRODUCTION

Graph: A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. The vertex set and the edge set of G are denoted by V (G) and E (G) respectively. If $e = \{u, n\}$ is an edge we write e = uv we say that e joints the vertices u and v, u and v are incident with e. If e_1 and e_2 are distinct edges of G incident with a common vertex then e_1 and e_2 are said to be adjacent edges. The number of vertices in G is called the order of G and the number of edges in G is called the size of G. A graph of order n and size m is called a (n, m) graph A graph is trivial if its vertex set is a singleton.

A vertex u is called a neighbour of a vertex v in G, if uv is an edge of G. The set of all neighbours of v is the open neighbourhood of v and is denoted by N (v); the set N [v] = N (v) \cup {v} is the closed neighbourhood of v in G.

Let $S \subseteq V$, then define $N(S) = \bigcup_{u \in S} N(u)$ and $N[S] = \bigcup_{u \in S} N[u]$ if $(u, v) \in E$ then u is said to be adjacent to v and v is said to be adjacent from u.

Digraph: A graph D = (V, E) is said to be digraph if E is subset of {(u, v); u, $\nu \in V$, $u \neq \nu$). Some times we done V (D) and E (D) instead of V and E respectively to stress the digraph D.

Representation. An edge $(u, v) \in E$ is represents as $u \rightarrow v$

If $(u, v) \in E$ and $(v, u) \in E$ then it is represent as $u \rightarrow v$

To remove this message, purchase the

product at www.SolidDocuments.com

Example 1:

Here V (D) = {u, ν , w, u} and E (D) = {(u, x), (x, u), (ν , u), (v, w), (x, w)}.

Notations: $d_0(\nu)$ denotes the out degree of ν , $d_i(\nu)$ denotes the indegree of $\nu d_{i0}(\nu)$ denotes the in-out degree of ν . For example in the above example = 1. p and q denotes |V| and |E| respectively. $\delta_0(D)$ and $\Delta_0(D)$ denotes minimum and maximum out degree of D respectively.

We use the following notations.

$$\begin{split} N_{0}(v) &= \{ u \in V : (\nu, u) \in E \} \\ N_{0}[v] &= \{ \nu \} \cup N_{0}(\nu), \\ N_{i}(v) &= \{ u \in V : (u, \nu) \in E \}, \\ N_{i}[v] &= \{ \nu \} \cup N_{i}(\nu) \\ N_{i0}(v) &= \{ u \in V : (u, \nu) \in E \text{ and } (\nu, u) \in E \}, \\ N_{i0}[v] &= \{ \nu \} \cup N_{i0}(\nu). \end{split}$$

Underlying Graph: Let D be a digraph. The underlying graph G (D) of D is the undirected graph obtained from D by removing the directions. For example the underlying graph of the digraph in Example 1 is

Proposition 1: $d_G(\nu) = d_i(\nu) + d_0(\nu) - d_{i0}(\nu)$ where G is the underlying graph of D. $d_0(\nu) = |N_0(\nu)| d_i(\nu) = |N_i(\nu)|$ and $d_{i0}(\nu) = |N_{i0}(\nu)|$.

Proof: Proof is obvious.

Domination Number: The domination number of G is the minimum cardinality taken overall all dominating set in G and is denoted by $\gamma(G)$.

ID CONVERT

This document was created using

Independence Number: Independence number of a graph G is the maximum cardinality of an independent set of G and is denoted by β (G).

Roman Dominating Number: Let G be an undirected graph. A function $f = (V_0, V_1, V_2)$ on G is a Roman dominating function (RDF) if $V_2 > V_0$ where > means that the set V_2 dominates the set V_0 (i.e.) $V_0 \subseteq N(V_2)$. The weight of f is $f(v) = \sum_{\nu \in V} f(v) = 2n_2 + n_1$, where $n_i = |V_i|$ for i = 0, 1, 2. The Roman domination number denoted by $\gamma_R(G)$ equals the minimum weight of an RDF of G and we say that a function $f = (V_0, V_1, V_2)$ is a γ_R function if it is an RDF and $f(\nu) = \gamma_R(G)$.

Directed Dominating Number: Led D = (V, E) be a digraph. A set S \subseteq V is called a directed dominating set in D if N₀[S] = V. The directed dominating number $\overline{\gamma(G)}$ is the minimum cardinality of a directed dominating set in D and a directed dominating set S of minimum cardinality is called a $\overline{\gamma}$ set of D.

2. DIRECTED ROMAN DOMINATING NUMBER

A directed Roman dominating function (abbreviated by dRDF) in a directed graph D = (V, E) is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that for every vertex u for which f(u) = 0 there is at least one vertex v for which f(v) = 2 and $(v, u) \in E$. The weight of a directed Roman dominating function is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of a directed Roman dominating function of a directed graph D is called directed Roman dominating number and it is denoted by $\gamma_{d}(G)$.

Let $\nu \in S \subseteq V(D)$. Vertex u is called a diprivate neighbour of v with respect to S (denoted by u is an S – dpn of ν), if $(\nu, u) \in E(D)(x, u) \notin E$ for all other $x \in S$. The set dpn $(\nu, S) = N_0[n] - N_0[S - \{\nu\}]$ of all S-dpns of ν is called the diprivate neighbourhood set of ν with respect to S. The set S is said to be di-irredundant it for every $\nu \in S$ dpn $(\nu, S) \neq \emptyset$. A S-dpn u of ν is said to be external if $u \notin S$.

Independent Vertex: A vertex ν is said to be independent with respect to a dRDF f if f (ν) \neq 0.

Uniformly Independent Vertex: A vertex ν is said to be uniformly independent if $f(\nu) \neq 0$ for all dRDF.

Proposition 2: If $d_i(\nu) = 0$ if and only if ν is uniformly independent vertex.

Proof: Proof is obvious.

Definition: A dRDF f with f (V) = γ_d (D) is called γ_d function.

Example 2: Define f(x) = 2, f(v) = f(w) = f(y) = 0, f(u) = 1, obviously this function f is a γ_d function. For if, f is not γ_d function, let g be a γ_d function. It is obvious that x is uniformly independent vertex. If g(x) = 1, then g(y) must be 1.

SOLID CONVERTER

Now, $g(N_0[u]) \ge 2$. Therefore $g(V) \ge 4$. This is a contraction to minimality of g. Therefore f is the γ_d function.

Example 3: Here, $\gamma_d(D) = 7$. For a is uniformly independent vertex. Therefore $f(a) \neq 0$ for all dRDF. Let f be any arbitrary dRDF.

SOLID CONVERTE

For example, m (D) of the Example 2 is

Properties of m (D).

Property 1: $D \cong G(D) \Leftrightarrow m(D)$ is a symmetric matrix.

Let N (D) and M (D) denotes the number of dRD functions and gd functions of D. Consider the set S (D) = { f : f : V (D) \rightarrow {0, 1, 2} obviously $|S(D)| = 3^p$, where |S(D)| denotes the number of elements in S (D). Let R (D) = { f \in S (D) : f is dRDF }. N (D) = |R(D)|. It is obvious that R (D) \subseteq S (D). Therefore N (D) \leq 3^p.

Theorem 2: $N_d(D) \le 3^p - 2^p + 1$.

Proof: Consider the set $A = \{f : V(D) \rightarrow \{0, 1\}$. It is obvious that $|A| = 2^p$. For $f \in A$ if f(u) = 0 for at least one u, then f is not a dRDF. Therefore f(u) = 1 for all $u \in V(D)$ is the only dRDF in A. Therefore, we find that there are $2^p - 1$ functions which are not dRDF. Therefore $N_d(D) \le 3^p - 2^p + 1$.

Algorithm to define a dRDF

- Step 1: Enter the matrix m (D)
- Step 2: Choose the vertex ν with $d_0(\nu) = \Delta_0(D)$.

That is row with maximum number of 1's.

- Step 3: Define $f(\nu) = 2$ and f(u) = 0 for all $u \in N_0(\nu)$.
- Step 4: Delete all the rows and columns corresponding to the vertices at which f was defined. We get a reduced matrix.
- Step 5: Case (i) If f is defined for all the vertices. Go to Step 7.

Case (ii) D = D – { ν : f (ν) is defined}

Step 6: Go to Step 1.

Step 7: End.

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

This document was created using

The dRDF defined using the above algorithm may not be γ_d functions, for example

The function defined using the above algorithm is

$$\begin{split} f(a) &= 2, f(b) = 0, f(c) = 0, \\ f(d) &= 0, f(e) = f(f) = f(g) = f(h) = f(i) = f(j) = 1, \\ f(V) &= 8. \end{split}$$

Now define

$$g(b) = g(c) = g(d) = 2,$$

$$g(a) = 1$$

$$g(x) = 0 \quad \text{if} \quad x \in \{a, b, c, d\}.$$

In the above graph g(V) = 7. Therefore, f(V) is not a γ_d functions.

Theorem 3: For any digraph D, γ_{R} (G(D)) $\leq \gamma_{d}$ (D) £ n + 1 – Δ_{0} (D).

Proof: Let $f = (V_{0'} V_{1'} V_2)$ be a γ_d functions of D. Clearly, f is a Roman dominating function of G(D). Therefore, γ_R (G(D)) < γ_d (D). Choose the vertex such that Δ_0 (D) = $d_0(\nu)$. Define f (ν) = 2 and f (u) = 0 for all $u \in N_0(\nu)$. Define f (x) = 1 for all other vertices. Obviously f is a dRDF and f (ν) = n – Δ_0 (D) + 1. Therefore, γ_d (D) ≤ n + 1 – Δ_0 (D).

Theorem 4: $\gamma_d(D) = \gamma_{R'}$ (G(D)) if and only if every γ_d function of D is a γ_R function of G(D).

Proof: Proof is obvious.

Theorem 5: If f is dRDF in D, S = { $u \in V(D) : f(u) = 2$ } is a directed dominating set in D.

Proof: Let $u \in V$. Suppose that f(u) = 0 then by definition there is a vertex $\nu \in V$ such that $(\nu, u) \in E$ and f(u) = 2. Therefore $N_0[S] = V$.

SOLID CONVERTE

Let f be a dRDF function of D and let (V_0, V_1, V_2) be the ordered partition of V induced by f, where $V_i = \{\nu \in V/f(\nu) = i\}$ and $|V_i| = n_i$, for i = 0, 1, 2. There exists a one to one correspondence between the functions $f : V \rightarrow \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V. Therefore one can write $f = (V_0, V_1, V_2)$.

A function $f = (V_{0'} V_{1'} V_2)$ is a directed Roman dominating function (dRDF) if $V_0 \subseteq N_0(v_2)$. The weight of f is $f(v) = \sum_{v \in V} f(v) = 2n_2 + n_1$.

Proposition 6: For any digraph D of order n, $\gamma(G(D)) = \gamma_R(G(D))) = \gamma_d(D)$ if and only if $D = \overline{K_n}$.

Proof: It is obvious that if $D = \overline{K_n}$ then G(D) = D and $\gamma(D) = \gamma_R(D) = \gamma_d(D) = n$. Conversely, let $f = (V_{0'}, V_{1'}, V_2)$ be a γ_d function $\gamma_d(D) = |V_1| + 2|V_2|$, $\gamma_R(G(D)) \le |V_1| + 2|V_2|$. But given that $\gamma_R(G(D)) = |V_1| + 2|V_2| = \gamma(G(D))$, $\gamma(G(D)) \le |V_1| + |V_2| \le |V_1| + 2|V_2| = \gamma_d(D)$.

Therefore,

$$|V_{1}| + |V_{2}| = |V_{1}| + 2|V_{2}|$$
$$|V_{2}| = 0$$
$$|V_{0}| = 0$$
$$g_{d}(D) = |V_{1}| = |V| = n,$$
$$g_{d}(G(D)) = n,$$
$$G(D) = \overline{K_{p}}.$$

Therefore

$$D = \overline{K_n}$$
.

Proposition 7: Let $f = (V_0, V_1, V_2)$ be any g_d function. Then

- (a) $\Delta_0(D(V_1)) = 1$, where $D(V_1)$ is the subgraph induced by V_1 .
- (b) $(V_2 \times V_1) \cap E(D) = \emptyset$.
- (c) For all $u \in V_0$, $|N_0(u) \cap V_1| \le 2$.
- (d) V_2 is a directed dominating set of $D(V_0 \cup V_1)$.

- (e) Let $D_1 = D_1(V_0 \cup V_2)$ the digraph generated by $V_0 \cup V_2$ from D. Let $\nu \in V_2$ and $N_1(\nu) \cap V_2 \neq \emptyset$. Then ν has at least two V_2 – diprivate neighbourhood in V_0 .
- (f) Let $\nu \in V_2$ and has precisely one external V_2 -dpn, say $w \in V_0$ and $(w, \nu) \in E(D)$ then $N_0(w) \cap V_1 = \emptyset$.

ONVERTE

(g)
$$k_1 = |\{u \in V_2 : |N_i(\nu) \cap V_2| \neq \emptyset\}|$$
 and $c = |\{w \in V_0 : |N_i(w) \cap V_2| \ge 2\}|$.
Then $n_0 \ge n_2 + k_1 + c$.

Proof:

- (a) Suppose $\Delta_0(D(V_1)) > 1$, there is at least one vertex $\nu \in V_1$ such that $\{\nu_1, \nu_2, \nu_3, ..., \nu_m\} \subseteq N_0(\nu) \cap V_1$ with m > 1. Now, define $g(\nu) = 2$, $g(\nu i) = 0$ for all i = 1, 2, ..., m and $g(\nu) < f(\nu)$, which is a contradiction. Then for $\Delta_0(D(V_1)) = 1$.
- (b) Suppose $(V_2 \times V_1) \cap E(D) \neq \emptyset$. Let $(\nu_2, \nu_1) \in E(D)$ with $\nu_2 \in V_2$ and $\nu_1 \in V_1$. Now define $g(\nu_1) = 0$, g(u) = f(u) for all $u \neq \nu_1$ certainly g is a γ_d function g(V) = f(V) 1, which is a contradiction.
- (c) Suppose there exists some $u \in V_0$ and $|N_0(u) \cap V_1| \ge 3$. Then there exists $\{u_1, u_2, u_3, \dots, u_m\} \subseteq N_0(u) \cap V_1$, where $m \ge 3$. Now define g(u) = 2, $g(u_i) = 0$. Certainly g is a γ_d function and g(V) < f(V), which is a contradiction. Therefore, $|N_0(u) \cap V_1| \le 2$.
- (d) Any vertex $\nu \in D[V_0 \cup V_2]$ is either in V_2 or it is adjacent from a vertex in V_2 . Therefore V_2 is a directed dominating set of $D(V_0 \cup V_1)$.
- (e) Suppose there is only one V₂-diprivate neighbourhood in V₀, say w. Let u ∈ N₁(ν) ∩ V₂. Now from a new function g such that g(ν) = 0 and g(w) = 1, for all other vertices the value of g is equal to the value of f then g is a dRDF with smaller weight than f, which is a contradiction.
- (f) Suppose $N_0(w) \cap V_1 \neq \emptyset$. Define $g(\nu) = 0$, g(y) = 0 for every $y \in N_0(w) \cap V_1$, g(w) = 2 and g(x) = 0. For any other $x \in V(D)$, weight of g is smaller than f, which is contradiction.
- (g) Let $k_0 = |\{\nu \in V_2 : |N_i(\nu) \cap V_2| = \emptyset\}|$. Then $k_0 + k_1 = n_2$ by (e) $n_0 \ge k_0 + 2k_1 + c$ = $n_2 + k_1 + c$.

Theorem 8:

 $\gamma_{d}(D) = |V(D)|$ if and only if $\Delta_{0}(D) = 1$.

Proof: Let $g_d(D) = n = |V|$. Using Theorem 4, $\gamma_d(D) \le n + 1 - \Delta_0(D)$ that is $n \le n + 1 - \Delta_0(D)$, that is $\Delta_0(D) \le 1$. Therefore $\Delta_0(D) = 1$. Conversely, assume $\Delta_0(D) = 1$. Then there is no reducing vertex in V. Therefore $\gamma_d(D) = n$.

3. DIRECTED ROMAN DOMINATING NUMBER FOR PATHS

To find the $\gamma_d(D)$, where D is a dipath. Let D be a dipath. Define $T(D) = \{\nu \in V(D) : d_0(\nu) = 2\}$.

VERT

Definition: A vertex $u \in T(D)$ is said to be independent from ν if $d(u, \nu) \ge 3$.

Proposition 9: Let $\nu_1, \nu_2, ..., \nu_r$ be the vertices in T (D) and ν_i is independent from ν_i for every $i \neq j$. Then $\gamma_d(D) \leq n - r$.

Proof: Define $f(v_i) = 2$ for every i = 1, 2, 3, ..., r and f(u) = 0 for every vertex u, which is adjacent to any one of v_i . And also define, f(x) = 1 for all other vertices in V. Now, f(V) = n - r and f is a dRDF. Therefore $\gamma_d(D) \le n - r$.

Let \hat{P}_n be the collection of dipaths of length n. Obviously $|\hat{P}_n| = 3^n$.

Proposition 10: If $D \in \hat{P}_1$ then $\gamma_d(D) = 2$.

Proof: The proof is obvious.

Proposition 11: Let $D \in \hat{P}_2$ and $G(D) = v_{0'} v_{1'} v_2$.

Then

$$\gamma_{d}(D) = \begin{cases} 2 & \text{if } d_{0}(\nu_{1}) = 2, \\ 3 & \text{otherwise.} \end{cases}$$

Proof: The proof is obvious.

Definition: Let $\hat{Q}_n \in \hat{P}_n$, then define extension of $\hat{Q}_n = \{D \in \hat{P}_n + 1: D - \{\nu_{n+1}\} \in \hat{Q}_n\}$. It is denoted by $T(\hat{Q}_n)$. Obviously $|T(\hat{Q}_n)| = 3 |(\hat{Q}_n)|$.

Define

$$\begin{aligned} A_{1}(\hat{Q}_{n}) &= \{ D \in \hat{Q}_{n} : d_{i}(\nu_{n}) = 0 \} \\ A_{2}(\hat{Q}_{n}) &= \{ D \in \hat{Q}_{n} : d_{i0}(\nu_{n}) = 1 \} \\ A_{3}(\hat{Q}_{n}) &= \{ D \in \hat{Q}_{n} : d_{0}(\nu_{n}) = 0 \} \\ | A_{i}(\hat{Q}_{n}) | &= a_{i}(\hat{Q}_{n}) \text{ for all } i = 1, 2, 3 \\ B_{1}(\hat{Q}_{n}) | &= \{ D \in \hat{Q}_{n} : d_{0}(\nu_{n-1}) | \neq 2 \} \\ B_{2}(\hat{Q}_{n}) | &= \{ D \in \hat{Q}_{n} : d_{0}(\nu_{n-1}) | = 2 \} \\ | B_{i}(\hat{Q}_{n}) | &= a_{i}(\hat{Q}_{n}) \text{ for } i = 1, 2 \end{aligned}$$

We can obviously observe the following $\hat{Q}_n = B_1(\hat{Q}_n) \cup B_2(\hat{Q}_n)$

$$\begin{split} &B_1(\hat{Q}_n) \cap B_2(\hat{Q}_n) = \emptyset, \\ &\hat{Q}_n = \bigcup_{i=1}^3 A_i(\hat{Q}_n) \\ &A_i(\hat{Q}_n) \cap A_j(\hat{Q}_n) = \emptyset \text{ for all } i \neq j \\ &\sum_{i=1}^3 a_i(\hat{Q}_n) = \sum_{i=1}^2 b_i(\hat{Q}_n) = |\hat{Q}_n|. \end{split}$$

ID CONVERT

This document was created using

Theorem 12:

- (i) $a_i(B_1(T(\hat{Q}_n))) = \sum_{i=1}^3 a_i(\hat{Q}_n) = |\hat{Q}_n|.$
- (ii) $a_2(B_1(T(\hat{Q}_n))) = a_3(B_1(T(\hat{Q}_n))) = a_3(\hat{Q}_n).$
- (iii) $a_1(B_2(T(\hat{Q}_n))) = 0.$
- (iv) $a_2(B_2(T(\hat{Q}_n))) = a_3(B_2(T(\hat{Q}_n))) = a_1(\hat{Q}_n) + a_2(\hat{Q}_n).$

Proof: Let $D \in \hat{Q}_n$ and $G(D) = \nu_0 \nu_1 \nu_2 \nu_3, \dots, \nu_n$. Form a new digraph D_1 , by adjoining a new vertex ν_{n+1} such that $G(D_1) = \nu_0 \nu_1 \nu_2 \nu_3, \dots, \nu_n, \nu_{n+1}$ and $E(D_1) = E(D) \cup \{(\nu_{n+1}, \nu_n)\}$. Certainly $D_1 \in A_1(B_1(T(\hat{Q}_n)))$ therefore there is a one to one correspondence between $D_1 \in A_1(B_1(T(\hat{Q}_n)))$ and $D \in \hat{Q}_n$. Therefore,

$$a_{i}(B_{1}(T(\hat{Q}_{n}))) = |\hat{Q}_{n}|.$$

- (ii) Let $D \in A_3(\hat{Q}_n)$ and $G(D) = \nu_0 \nu_1 \nu_3 \dots \nu_n$. Form new digraphs D_1 and D_2 , by adjoining a new vertex ν_{n+1} such that $G(D_1) = G(D_2) = \nu_0 \nu_1 \nu_2 \dots \nu_n \nu_{n+1}$ and $E(D_1) = E(D) \cup \{(\nu_{n+1'}, \nu_n), (\nu_{n'}, \nu_{n+1})\}$ and $E(D_2) = E(D) \cup \{(\nu_{n'}, \nu_{n+1})\}$. Certainly $D_1 \in A_2(B_1(T(\hat{Q}_n)))$ and $D_2 \in A_3(B_1(T(\hat{Q}_n)))$. Therefore there is a one to one correspondence between $D_1 \in A_2(B_1(T(\hat{Q}_n)))$ and $D \in A_3(\hat{Q}_n)$ also between $D_2 \in A_3(B_1(T(\hat{Q}_n)))$ and $D \in A_3(\hat{Q}_n)$. Therefore $a_2(B_1(T(\hat{Q}_n))) = a_3(\hat{Q}_n)$.
- (iii) There is no paths in $B_2(T(\dot{Q}_p))$ with $d_i(\nu_{n+1}) = 0$. Therefore

$$a_1(B_2(\hat{Q}_{n+1})) = 0.$$

(iv) Let $D \in A_1(\underline{Q}_n) \cup A_2(\underline{Q}_n)$. Form new digraphs D_1 and D_2 , by adjoining a new vertex v_{n+1} such that $G(D_1) = G(D_2) = v_0v_1v_2v_3 \dots v_nv_{n+1}$ and $E(D_1) = E(D) \cup \{(v_{n+1'}, v_n), (v_n, v_{n+1})\}$ and $E(D_2) = E(D) \cup \{(v_n, v_{n+1})\}$. Certainly $D_1 \in A_2$ ($B_2(T(\underline{Q}_n))$) and $D_2 \in A_3(B_2(T(\underline{Q}_n)))$. There is a one to one correspondence between $D_2 \in A_3(B_2(T(\underline{Q}_n)))$ and $D \in A_1(\underline{Q}_n) \cup A_2(\underline{Q}_n)$. Hence, $a_2(B_2(T(\underline{Q}_n))) = a_3(B_2(T(\underline{Q}_n))) = a_1(\underline{Q}_n) + a_2(\underline{Q}_n)$.

Lemma 13: Let $\hat{Q}_n = \{ D \in \hat{P}_n ; \Delta_0(D) = 1 \}$. Then $a_2(\hat{Q}_n) = a_3(\hat{Q}_n) = 1$.

Proof: We will prove by induction, when n = 1, the lemma is obviously true. Assume the induction hypothesis for \hat{Q}_{n-1} . By induction hypotheses for $a_2(\hat{Q}_{n-1}) = a_3(\hat{Q}_{n-1}) = 1$ by the Theorem 12.

$$a_{2}(B_{1}(T(\hat{Q}_{n-1}))) = a_{3}(B_{1}(T(\hat{Q}_{n-1}))) = a_{3}(\hat{Q}_{n-1}) = 1.$$
(1)
Iaim. $B_{1}(T(\hat{Q}_{n-1})) = \hat{Q}_{n}.$

VERT

С

 $B_1(T(\hat{Q}_{n-1})) \subseteq \hat{Q}_n$ is obvious. Let $D \in \hat{Q}_n$, and $G(D) = \nu_0 \nu_1 \nu_2 \dots \nu_{n-1} \nu_n$. Let $D_1 = D - \{\nu_n\}$. Obviously $D_1 \in \hat{Q}_{n-1}$. Therefore $D \in T(\hat{Q}_{n-1})$ and $D \in B_1(T(\hat{Q}_{n-1}))$ since $\Delta_0(D) = 1$.

Therefore, Equation (1) becomes $a_2(\hat{Q}_n) = a_3(\hat{Q}_n) = 1$.

Theorem 14: There are 2n + 1 dipaths with length n and $\Delta_0(D) = 1$.

Proof: Let $D \in \hat{P}_n$ and $G(D) = \nu_0 \nu_1 \nu_2 \dots \nu_{n-1} \nu_n$. Let $\hat{Q}_n = \{D \in \hat{P}_n : \Delta_0(D) = 1\}$. We will prove the theorem by induction on n. It is obvious that there are three dipaths of length 1 and $\Delta_0(D) = 1$. Assume the induction hypothesis for \hat{Q}_{n-1} . By induction hypothesis there are 2n - 1 dipaths in \hat{Q}_{n-1} .

That is $|\hat{Q}_{n-1}| = 2n - 1$. By the above theorem $a_1(B_1(T(\hat{Q}_{n-1}))) = |\hat{Q}_{n-1}| = 2n - 1$, $a_2(B_1(T(\hat{Q}_{n-1}))) = a_3(B_1(T(\hat{Q}_{n-1}))) = a_3(\hat{Q}_{n-1})$. By the Lemma 13 $a_2(B_1(T(\hat{Q}_{n-1}))) = a_3(B_1(T(\hat{Q}_{n-1}))) = 1$, $|\hat{Q}_{n-1}| = 2n - 1 + 1 + 1 = 2n + 1$. Hence proving the theorem.

Proposition 15: Let $n \ge 2$, fix r so that, $1 \le r \le n - 1$, and define $F_{r,n} = \{D \in \hat{P}_n : d_0(\nu_r) = 2 \text{ and } d_0(\nu_1) = 1 \text{ for all } i \ne r\}$. Then $a_3(F_{r,n}) = 2r$.

Proof: We will prove by induction on n. Let n = 2, then the following is true.

Therefore $a_3((F_{r,2})) = 2 = 2r$ since r = 1.

Assume induction hypothesis for n - 1. Let $D \in F_{r,n}$.

Case 1: Let r = n - 1. Then clearly $D - \{\nu_n\} \in \{x \in \hat{P}_{n-1} : \Delta_0(x) = 1\}$.

Let
$$\hat{Q}_{n-1} = \{x \in \hat{P}_{n-1} : \Delta_0(x) = 1\}$$
. Using the Theorem 14, we have
 $|\hat{Q}_{n-1}| = 2n - 1$. By Lemma 13 $a_2(\hat{Q}_{n-1}) = a_3(\hat{Q}_{n-1}) = 1$. Therefore
 $a_3(F_{r,n}) = a_3(B_2(T(_{n-1})))$
 $= a_3(\hat{Q}_{n-1}) + a_2(\hat{Q}_{n-1})$ (using theorem 14)
 $= 2n - 3 + 1$
 $= 2n - 2$
 $= 2(n - 1)$
 $= 2r$.

Case 2: Let 1 < r < n - 1. By induction hypotheses $a_3(F_{r,n-1}) = 2r$. But $a_3(F_{r,n}) = a_3(F_{r,n-1}) = a_3(\tilde{Q}_{n-1})$. Therefore $a_3(F_{r,n}) = 2r$. Hence proving the proposition.

JVERT

Proposition 16: Let $n \ge 2$ and r is fixed, $1 \le r \le n - 1$ define $F_{r,n} = \{D \in \hat{P}_n : d_0(\nu_r) = 2$ and $d_0(\nu_r) \ne 2$ for all $i \ne r\}$, $|F_{r,n}| = 4r(n - r)$.

Proof: We will prove by induction on n.

Therefore,

$$|F_{r,2}| = 4$$

= 4.1
= 4r (n - r), where r = 1, n = 2.

Assume induction hypothesis for n - 1. Let $D \in F_{r, n}$.

Case 1: r = n - 1.

Then $D - \{\nu_n\} \in \{x \in \hat{P}_{n-1} : \Delta_0(x) = 1\}$. Let $\hat{Q}_{n-1} = \{x \in \hat{P}_{n-1} : \Delta_0(x) = 1\}$, then it is obvious that $F_{r,n} = B_2(T(\hat{Q}_{n-1}))$.

Now,

$$\begin{aligned} \left| \mathbf{F}_{r,n} \right| &= b_2(T(\hat{Q}_{n-1})) \\ &= a_1(B_2(T(\hat{Q}_{n-1}))) + a_2(B_2(T(\hat{Q}_{n-1}))) + a_3(B_2(T(\hat{Q}_{n-1})))) \\ &= 0 + a_1(\hat{Q}_{n-1}) + a_2(\hat{Q}_{n-1}) + a_1(\hat{Q}_{n-1}) + a_2(\hat{Q}_{n-1}) \quad \text{(using theorem 12)} \\ &= 2(a_1(\hat{Q}_{n-1}) + a_2(\hat{Q}_{n-1})) \\ &= 2|\hat{Q}_{n-1}| - a_3(\hat{Q}_{n-1})) \\ &= 2(2n - 1 - 1) \quad \text{(by theorem 14)} \\ &= 2(2n - 2) \\ &= 4(n - 1) \\ &= 4r(n - r), \text{ since } r = n - 1. \end{aligned}$$

Case 2: r < n – 1.

Now, clearly, $D - \{v_n\} \in F_{r, n-1}$. By induction hypothesis.

Let
$$\hat{Q}_{n-1} = F_{r, n-1'} | F_{r, n-1} | = 4r (n - 1 - r)$$
. It is obvious that $F_{r, n} = B_1(T(\hat{Q}_{n-1}))$. Therefore,

ID CONVERTE

$$\begin{split} F_{r,n} &|= b_1(T(\hat{Q}_{n-1})) \\ &= \left| B_1(T(\hat{Q}_{n-1})) \right| \\ &= a_1(B_1(T(\hat{Q}_{n-1}))) + a_2(B_1(T(\hat{Q}_{n-1}))) + a_3(B_1(T(\hat{Q}_{n-1}))) \\ &= \left| \hat{Q}_{n-1} \right| + a_3(\hat{Q}_{n-1}) + a_3(\hat{Q}_{n-1}) \quad \text{(by theorem 12)} \\ &= \left| F_{r,n-1} \right| + 2a_3(F_{r,n-1}) \\ &= 4r(n-1-r) + 2.2r \\ &= 4r(n-1-r) + 4r \\ &= 4r(n-1-r) + 4r \\ &= 4r(n-1-r). \end{split}$$

Hence proving the proposition.

 $\begin{array}{l} \text{Proposition 17:} \ \hat{Q_n} = \{ D \in \ \hat{P_n} : \gamma_d(D) = n-1 \} \ \left| \ \hat{Q_n} \right| = 2 \ (n+1) \ n \ (n-1)/3. \\ \text{Proof: Let } n \geq 2 \ \text{and } r \ \text{is fixed}, \ 1 \leq r \leq n-1, \ \text{define } F_{r,n} = \{ D \in \ \hat{P_n} : d_0(\nu_r) = 2 \ \text{and} \\ d_0(\nu_i) \neq 2 \ \text{for all } i \neq r \}. \ \text{Clearly,} \end{array}$

$$\begin{split} |\hat{Q}_{n}| &= \sum_{r=1}^{n-1} F_{r,n} \\ &= \sum_{r=1}^{n-1} 4r (n-r) \\ &= \sum_{r=1}^{n-1} 4rn - 4r^{2} \\ &= 4 \left\{ \sum_{r=1}^{n-1} nr - \sum_{r=1}^{n-1} r^{2} \right\} \\ &= 4 \left\{ (nn (n-1)/2) - (n (n-1) (2n-1)/6) \right\} \\ &= (2nn (n-1)) - (2n (n-1) (2n-1)/3) \\ &= 2n (n-1) \left\{ (n - (2n-1)/3) \right\} \\ &= 2n (n-1) \left\{ (3n - 2n + 1)/3 \right\} \\ &= 2n (n-1) ((n+1)/3) \\ |\hat{Q}_{n}| &= 2 (n+1) n (n-1)/3. \end{split}$$

Hence proving the proposition.

SOLID CONVERTER

This document was created using

DF

4. OPEN PROBLEMS

- 1. How many γ_d functions for a digraph D?
- 2. How will you check a given dRD function is whether γ_{d} function or not?
- 3. How many $D \in \hat{P}_n$ with $\gamma_d(D) = n r$.

REFERENCES

- [1] F. Harary, R. Znorman, and D. Cartwright, An Introduction to the Theory of Directed Fraphs, John Wiley and Sons Inc., New York, (1965).
- [2] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
- [3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs Advanced Topics, Marcel Dekker, Inc., New York, (1998).
- [4] M. A. Helming A Characterization of Roman Trees, Discuss, Math. Graph Theory, 22(2), (2002), 325-334.
- [5] C. S. ReVelle, and K. E. Rosing, Defendens Imperium Romanum: A Classical Problem in Military Strategy, Amer. Math. Monthly, 107(7), (2000), 558-594.

M. Kamaraj Department of Mathematics, Government Arts College, Melur-626106, Madurai District, Tamilnadu, India. E-mail: kamarajm17366@rediffmail.com

V. Hemalatha Department of Mathematics, PMT College, Usilampatti-625532, Madurai District, Tamilnadu, India. E-mail: kathirthiruvu@gmail.com

R

40

SOLID CONVERTER PDF