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ABSTRACT

In this paper, we propose effective genetic operators so that the cooperative genetic
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algorithm (GA) can solve the nurse scheduling problem. A clinical director of a medical
department must make a duty schedule for all nurses in the department every month.
This scheduling task is very complex. It takes one or two weeks to create the nurse
schedule even for a veteran director. In the conventional usage of cooperative GA, a

crossover operator is employed only for optimization to retain consistency between
chromosomes. We propose a virus operator for the cooperative GA that ensures the
consistency of the nurse schedule. The cooperative GA with the new operator yields
surprisingly good results that are never suggested by the conventional algorithm.

1. INTRODUCTION

General hospitals consist of several sections such as
the internal medicine department and the pediatrics
department. About fifty to thirty nursing staff are
assigned to each section. The section manager develops
a roster, or a shift schedule, of all nurses of her/his
section every month. Our interviews of the staff of
several hospitals found that the manager considers more
than fifteen requirements in creating the schedule.
Scheduling nurses is, therefore, a very complex task.
We call this problem the Nurse Scheduling Problem
(NSP). In the interview, even a veteran manager has to
spend one or two weeks to complete the nurse
scheduling. This represents a great loss of time and
effort. Therefore, general hospitals are starting to
demand computer software that can solve NSP (Goto,
1993; Berrada, 1996; Takaba, 1998; lkegami, 2001;
Burke, 2001a; Kawanaka, 2002; Inoue, 2002; Itoga, 2003;
Cheang, 2003; Burke, 20044a; Ernst, 2004; Burke, 2004b;
Li, 2004; Bard, 2005; Oezcan, 2005; Burke, 2006; Bard,
2007).

In an early study (Goto, 1993), the nurse scheduling
problem, defined as a discrete planning problem, is
solved by using the Hopfield-model type-neural

network. Berrada et al. (Berrada, 1996) have proposed
a technique to define the nurse scheduling problem as
a multi-objective problem and to solve it by using a
simple optimizing algorithm. The technique by Takaba
et al. (Takaba, 1998) provides a simple editing tool and
simple GA for the nurse scheduling under Visual Basic
environment. There are several techniques (Tkegami,
2001; Inoue, 2002; Bard, 2005; Bard, 2007) that require
the user to modify or select the nurse schedule in the
middle or the final stage of the optimization. Although
these researches are theoretical trial, these are not
effective in a practical sense. Burke et al. apply a
memetic approach to the nurse scheduling problem
(Burke, 2001a; Burke, 2004a; Burke, 2004; Burke, 2006).
Burke et al. (Burke, 2001a) also define a technique to
evaluate the nurse schedule. Croce et al. (Croce, 2010)
proposes a variable neighborhood search technique for
the nurse scheduling. However, the scheduling problem
defined in this manuscript is too easy. And the
technique proposed in this manuscript is applied to a
private hospital in Italy. Real problem of the nurse
scheduling in the general hospital is not so easy and
very hard to solve. Some of these techniques are
implemented as a commercial nurse scheduling
software. However, the evaluation technique does not
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fit to the shift system of our country. In our country,
almost hospitals employ three-shift system. Therefore,
we have defined the evaluation technique of the nurse
schedule (Ohki, 2006; Ohki, 2007; Uneme, 2008; Ohki,
2012).

In the real world, there are cases that nurses attend
on a different day from the original schedule because
of the circumstances of another nurse or an emergency.
There are also the cases that a nurse whom duty has
been assigned originally takes a rest due to a disease.
We have discussed such a case that the nurse schedule
has been changed in the past weeks of the current
month (Ohki, 2006; Ohki, 2007; Uneme, 2008; Ohki,
2012). By such the changes, various inconveniences
occur, for example, imbalance of the number of holidays
and attendances. Such an inconvenience causes the
fall of the nursing level of the whole nurse organization.
Therefore, such inconvenience should be eliminated
to acquire a better schedule. By considering the change
of the shift schedule whenever one week passes, the
shift schedule is reoptimized in remaining weeks of
the current month.

In fact, the nurse schedule is still made by the hand
of a manager or a chief nurse in many general hospitals.
In our investigation, there are no general hospitals that
use commercial software for nurse scheduling.
Managers are dissatisfied with the shift schedule
generated by commercial software And, many
interactions to correct the schedule are also very
complex for the user. The optimization algorithm of
such the commercial software is still poor, and
moreover, the schedule provided by such the software
is hard to correct too.

In this paper, we discuss on generation and
optimization of the nurse schedule by using the
Cooperative Genetic Algorithm (CGA) (Itoga, 2003).
CGA is a kind of Genetic Algorithm (GA) (Goldberg,
1989), and powerful optimizing algorithm for such a
combinatorial optimization problem. In the normal GA,
individuals compete each other and superior individuals
are preserved. On the other hand, the individuals
cooperate each other and the optimization of whole
population progresses in CGA.

We have proposed effective mutation operators for
CGA to be applied to NSP (Ohki, 2012). The
conventional CGA optimizes the nurse schedule only
by using crossover operator, because the crossover has
been considered as the only one operation which keeps
consistency of relation between chromosomes in the
CGA, where the consistency means the number of
nurses at each shift term in this case. In NSP treated in
this paper, this consistency is positioned as a strong
constraint. When CGA only with the crossover operator

is applied to the nurse scheduling, the optimization
often stagnates. Therefore we have proposed an
effective mutation operator keeping the consistency for
the CGA (Uneme, 2008). This mutation operator is
activated depending on the optimization speed.
However, this mutation operator requires two
parameters to define itself. And also, these parameters
are difficult to define, because several experiments and
experiences are required. This means that the mutation
operator depending on the optimization speed is
effective but unfavorable for the user. To improve this
problem, we have proposed a simple mutation operator
activated periodically. We call this operator the periodic
mutation operator.

In this paper, we propose a virus operator for the
cooperative GA, which does not lose consistency of
the nurse schedule. The cooperative GA with the virus
operator has brought a surprisingly good result, it has
never been brought by the conventional algorithm.

2. EVALUATION OF THE NURSE SCHEDULE

We have interviewed to several real general hospitals.
By means of the interviews, a method to evaluate the
nurse schedule is clarified as follows (Ohki, 2006; Ohki,
2007; Uneme, 2008; Ohki, 2012). For constituting the
nurse schedule, the manager must consider many
requirements. For example, the meeting, the training
and the requested holiday must be accepted, where
we assume that all the requested holidays have been
confirmed by the manager. The semi-night shifts and
the midnight shifts should be impartially arranged to
all nurses. And arrangement of six or more consecutive
shift days is prohibited. We have summarized all the
requirements into the thirteen penalties. The detail of
these penalty functions are explained in the manuscript
(Ohki, 2012).

To evaluate the work load of each nurse, we define
a penalty function F|, for three consecutive days of
shift content. It is not preferable for the night shifts
to be assigned to some nurse intensively. To suppress
this undesirable situation, we define a penalty function
F, to prohibit the X night shift or more for the
consecutive Y days. In some hospitals, there are some
cases to prohibit a specific shift pattern. If the shift
pattern starting from the j-th day of the i-th nurse
is prohibited, a penalty fsl,], is assigned to 1. We
define a penalty function, F,, equal to the sum total
of fglj from j = 1 to j=D, to implement such the
prohibition, where D denotes the number of total shift
days.

The number of the shifts should be impartially
assigned among nurses. A total nursing level falls, if
many shifts are concentrated to particular nurses. We



An Effective Virus Operator for Cooperative GA Applied to Nurse Scheduling Problem 37

define penalty functions F,, and F_, to suppress
unevenness of the number of shifts among nurses. The
functions F,, and F,, are concerning the numbers of
holidays and the number of night shifts respectively. If
the shifts are assigned to particular nurses on many
consecutive days, total nursing level falls. We define a
penalty function F,, to restrain assignment of the shift
on many consecutive shift days.

In our algorithm, the number of nurses in each
working hours is preserved in any case. However, if
new face nurses are intensively assigned on a particular
working hours, the nursing level falls. The expert or
more skilled nurses should be assigned for keeping
nursing level. We define penalty functions, F,, F, and
F,, to evaluate the nursing level on the day time shift,
the semi-night shift and the midnight shift respectively.

The manager also considers affinity between the
nurses. Because of bad affinity between a certain nurses
assigned to in the same time, there is the case that the
nursing level deteriorates remarkably. To restrain such
the unfavorable affinity, we define a penalty function,
F,,. In the midnight shift, the number of assigned nurses
is small. If the most of the nurses assigned to the
midnight shift are new face, the nursing level at the
midnight shift falls remarkably. To restrain such the
unfavorable situation, we define a penalty function,
F,. In general, one or more expert or more skilled
nurses should be assigned to the daytime shift and the
midnight shift. To restrain such an unfavorable
situation, we define a penalty function, F,.

At the real hospital, the shift schedule which
optimized before the beginning of the current month
is often changed day by day. Such changes of the
schedule lead to the disproportion of the number of
the shift days. It causes the overwork of particular
nurses, if such unexpected situation is ignored. This
undesirable situation yields the fall of the nursing level,
but may lead to medical accidents as well. To restrain
such an undesirable situation, we consider on the
reoptimization of the shift schedule of the remainder
of the current month. First, we assume that we have
had the well optimized shift schedule at the beginning
of the current month. When several weeks have passed,
we suppose that the shift schedule has been changed.
CGA is applied to reoptimize the shift schedule of the
next four weeks including the remainder of the current
month. With considering the circumstances of the
nurses, the shift schedule should not be changed as
much as possible. We define a penalty function F,, for
reoptimizing the shift schedule while having such a
dilemma. The penalty function F,, performs the
difference between the original schedule and the newly
optimized schedule of the remainder of the current

month as shown in Fig. 1. In this figure, the triangles
show the changes of the schedule.
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Figure 1: We expand NSP to accept some changes in the past two
weeks. This figure shows an example when the two weeks have
past, the coming four weeks are optimized to restrain inconvenience
because of the changes.

Finaly, we perform the shift schedule by the
following total penalty function at g -th generation,

M 6 D 12
E(g)zzzhkai+22hkaj+h13F13 (1)

i=1 k=1 j=1 k=7

where i --- I, denote penalty coefficients.

3. NURSE SCHEDULING BY CGA

3.1.Coding of the Nurse Schedule

In the nurse scheduling by CGA, an individual and its
group, or the population, are defined shown in Fig. 2.
The individual chromosome consists of the series of
the shift symbols. The shift series consists of 28 fields,
since almost hospitals handle four weeks as one month.
The i-th individual expresses one-month schedule of
the i-th nurse. In this problem, two or more individuals
do not express the identical nurse’s schedule. In other
words, the population denotes the whole schedule.

There are several shift symbols to be put in the
gene field as follows, symbols, D, S, M and H, denote
a daytime shift, a semi-night shift, midnight shift and
holiday respectively. Symbols, T, m and h denote a
training shift, a meeting and a requested holiday
accepted by the chief nurse, where these are treated as
a daytime shift term. Symbol, R, is a requested holiday
which confirmed by the manager.

3.2.Basic Algorithm to Optimize the Nurse Schedule
by Using CGA

The basic algorithm of the CGA is as shown in Fig. 3

(Ohki, 2006; Ohki, 2007; Uneme 2008). CGA applies

the crossover operator to the population and searches

so that a penalty of the whole population becomes
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Figure 2: Definition of chromosome and population. The X-th individual coded into chromosome denotes one month shift schedule of
the X-th nurse. The population including one month schedule of the current nurse organization.

small. The crossover operator selects a pair of parent
individual from the population. Two offspring pairs are
reconstituted by the two-point crossover. Taking back
these offspring pairs to the original position of the
parents, a temporal population is reconstituted. The
temporal population is evaluated by the total penalty
function E(g). These procedures are applied to one
hundred parent pairs selected from the population while
one generation cycle. A population giving the best
performance is selected for the next generation.
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Figure 3: One generation cycle of the CGA to optimize by using a
Crossover operator.

3.3.Periodic Mutation Operator

The mutation operator is periodically activated every
G,, generation cycles. Fig. 4 shows the process flow of
the optimization with the periodic mutation operator.
The periodic mutation operator requires only one

parameter, the mutation period G, , to define itself. We
have tried computational experiments under a condition
that 30 nurses belong the section. This experiment has
been carried out under harder condition about holiday
acquisition and nurse affinity. Fig. 5 shows the
maximum, the average and the minimum value of the
total penalty function given by the CGA with the
periodic mutation. The mutation period is effective on
narrow range from 50 to 250.

The computing time is recorded in ten trials under
the condition that the mutation period is defined as
150. The minimum, the averaged and the maximum
computing time is 8239 sec, 8356 sec and 9134 sec
respectively. The computing time in the case when the
periodic mutation is applied is almost same to when
the mutation depending on the optimization speed is
applied.

4. VIRUS OPERATOR

We propose a virus operator as a new technique. When
a virus in immunology is infected within a cell, it
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Figure 4: Process flow of the periodic mutation operator.
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Figure 5: Optimization results by the periodic mutation operator
with several mutation periods. We have tried to set the mutation
period from 50 to 5000

overwrites in a part of gene forcibly. The virus copies
own gene pattern in a genetic part of the cell in many
cases. Our virus operator simulates this work. An aim
of the virus operator is to replace some individuals
with a good thing forcibly when the optimization is
stagnant.

The overview of an operation of the virus operator
is as shown in Fig. 6. In normal optimization cycle, the
CGA searches by using the crossover and the mutation
operators and preserves the best performing individuals
after the crossover. When the mutation operator is
executed G, times, the virus operator is applied instead
of the mutation operator. One of individual who gives
a bad penalty is selected by using a roulette selection
manner. The virus operator overwrites the best
performed individual onto the selected individual.
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Figure 6: An overview of the operation of the virus operator.

We have tried two types of the CGA in this paper;
the CGA with the crossover and the mutation operators
and the CGA with those three operators. An
optimization of each algorithm is performed for One
hundred thousand generations. It takes about ten
minutes for one optimization. Ten times of trials are
carried out under each condition.

We have examined the virus operator. Different viral
infection frequencies are examined as shown by Fig.
7. The viral infection frequency is able to be set in a
considerably wide range.
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Figure 7: Comparison of the frequency of the first virus operator.

We have investigated the optimization with the
virus operator in detail. After twenty or thirty thousand
generations, penalty function, F_1, has big value, and
the value of all other penalty functions is comparatively
small. Then we modify a part of the virus operator:
when the best individual is preserved after the crossover
operation, the following partial penalty function is
applied,

6
H, :Ethkz (2)
k=2

As shown by Fig. 8, the modified virus operator
gives good results with any virus frequency.

The modified virus operator does not effectively
work after thirty thousand generation as shown in Fig.
9. In contrast, the mutation operator slowly searches.
Then we apply the modified virus operator until thirty
thousand generations. After that, the mutation operator
is only applied to the CGA with the crossover. We call
this technique a hybrid technique. As shown in Fig. 9,
the hybrid technique gives the best result. The
maximum, the average and the minimum values of
the total penalty function after the final generation are
398.26, 394.00 and 390.92. This minimum value is
similar to the value shown in Fig. 4 (G,,=150). The
maximum and the average value are both better than
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Figure 8: Comparison of the frequency of the modified virus
operator.

the values shown in Fig. 4 (G, =150). The hybrid
technique makes the optimization of the schedule
converge to good solution faster.
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Figure 9: Comparison of the optimization process among CGA only
with the crossover operator, CGA with the mutation operator, CGA
with the modified virus operator and CGA applied with the modified
virus operator until 30000-th generation.

5. CONCLUSION

This paper has introduced a nurse scheduling method
that is based on CGA. We have proposed the virus
operator for the CGA applied to the nurse scheduling.
The only one search technique of the conventional CGA
is the crossover operator, because it do not lose the
consistency of the nurse schedule. In contrast, the virus
operator which we proposed in this paper give good
results without losing the consistency. However, the
virus operator seems to be inferior to the periodic
mutation operator. Then we have proposed the modified
virus operator. This new method gives stable results
than periodic mutation operator. Finally, we have
proposed the hybrid technique. In the hybrid technique,
CGA searches the schedule with the modified virus

operator until the 3000-th generation cycle, and then,
CGA searches the schedule with the periodic mutation
operator. By means of the hybrid technique, the
optimization of the nurse schedule has been
accelerated.

In the future, the exchanging generation, 3000-th
generation cycle in this paper, should be automatically
decided. And also, a parallel processing technique for
the nurse scheduling by using CGA should be
considered. There are several aspects for the parallel
processing, fine-grain parallelization and macro
parallelization. In the idea of the fine-grain
parallelization, when the mutation is activated, several
mutated population can be generated. These are begun
to be optimized in the mutation period in parallel. On
the other hand, several cycles of the mutation period
can be executed in parallel. This is an aspect of the
macro parallelization.
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