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Abstract: Network game traffic generates a significant share of today’s Internet traffic. Network games can be seen as a
multicast group where players are the members. Each player in the group is considered as a source and other players as
destinations. Recently several multicast mechanisms were proposed that scale better with the number of multicast groups
than traditional multicast does. These proposals are known as small group multicast (SGM) or explicit multicast (Xcast).
Explicit multicast protocols, such as the Xcast protocol, encode the list of group members in the Xcast header of every
packet. If the number of members in a group increases, routers may need to frag-ment an Xcast packet. Fragmented packets
may not be identified as Xcast packets by routers. In this paper, we show that the Xcast protocol does not support the IP
frag-mentation and we show also that avoiding fragmenta-tion induces hard-coded limits inside the protocol itself in terms
of group size. First, we describe the Xcast proto-col, the Xcast+ protocol (which is an extension of Xcast) and we compare
these two protocols with traditional multicast protocols.We propose then a generalized version of the Xcast protocol, called
the GXcast protocol, intended to permit the Xcast packets fragmentation and to sup-port the increasing in the number of
members in a multicast group. We analyze and evaluate with simulations the impact on the GXcast protocol in terms of
scalability and efficiency. In our evaluation, we considered the network game as an application case of the Xcast protocol.
Finally, we conclude that the GXcast protocol is a feasible and promising protocol and very adequate to network applications.
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1. INTRODUCTION

Interactive, multi-player network games are becoming more
common. The amount of Internet traffic generated by
computer games can be expected to increase fast, especially
when the new wave of players enters the Internet with the
next generation game consoles that support Internet
connections. The observed game traffic still follows the
transmit cycle described in [1]: the server sends game state
information to each client where packets are read and
processed. Clients synchronize the server game state with
their local game state, process player commands and return
update packets with the player’s movement and status
information. Since slower client machines require more
processing time for rendering, their packet rate may be lower.
Both update and server information packet’s size is usually
very small since they only contain movement and status
information. A high market potential, increasing usage as
well as sharp real time requirements make this kind of
traffic interesting for Internet ervice providers and
manufacturers.

Important problems need to be studied with Internet
gaming:

• The effect of increasing the number of users.

• The effect of reduced QoS (i.e. packet loss, delay)
on the performance of games.

• Comparison of different connection types.
There exist no publicly available, standardized protocols

for exchanging network gaming data. This means that
different game software manufacturers utilize either their
own or licensed protocols for network gaming.

Network games can be seen as a multicast group where
players and the server are the members. Each player in the
group is considered as a source and other players as
destinations. This is more true for MMORPG than FPS
games.

Multicast, the ability to efficiently send data to a group
of destinations, has become increasingly important with the
emergence of network-based applications like video-
conferencing, distributed interactive simulation and software
upgrading. A multicast routing protocol should be simple to
implement, scalable, robust, use minimal network overhead,
consume minimal memory resources, and inter-operate with
other multicast routing protocols.

Most of proposed multicast protocols like DVMRP[2]
and MOSPF ([3, 4]) perform well if group members are
densely packed. However, the fact that DVMRP periodically
floods the network and the fact that MOSPF sends
group membership information over the links make these
protocols not efficient in cases where group members are

Journal of Information Technology and Engineering
Vol. 1 No. 2 (December, 2016)

                    Received: 03rd June 2016      Revised: 14th August 2016   Accepted: 01st November 2016



68 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 2, No. 1, January 2008

sparsely distributed among regions and the bandwidth is not
plentiful.

To address these issues, the Protocol Independent
Multicast (PIM) routing protocols are being developed by
the Inter-DomainMulticast Routing (IDMR), working group
of the IETF. PIM contains two protocols: PIM-Dense Mode
(PIM-DM) [5] which is more efficient with applications
where group members are densely distributed, and PIM-
SparseMode (PIM-SM) [6] which performs better with
applications where group members are sparsely distributed.
Although these two protocols share similar control messages,
they are essentially proposed for two different kinds of
applications.

Today’s multicast protocols [7] can be used to minimize
bandwidth consumption, but it suffers from a scalability
problem with the number of concurrently active multicast
groups because it requires a router to keep a forwarding state
for every multicast tree passing through it and the number
of forwarding states grows with the number of groups.

There seem to be two kinds of multicast that are
important: a broadcast-like multicast that sends data to a
large number of destinations and a narrow cast multicast that
sends data to a fairly small group. An example of the first
kind of multicast is the audio and video multicasting of a
presentation to all employees in a corporate intranet. An
example of the second kind of multicast is a video conference
involving three or four parties [7]. Thus, a one-size-fits-all
protocol will be unable to meet the requirements of all
applications [8]. Providing for many groups of small
conferences (a small number of widely dispersed people)
with global topological scope scales badly given the current
multicast model.

Recently several multicast mechanisms were proposed
that scale better with the number of multicast groups than
traditional multicast does. These proposals are known as
small group multicast (SGM) [10] or explicit multicast
(Xcast) [11]. Explicit multicast protocols, such as the Xcast
protocol, encode the list of group members in the Xcast
header of every packet. Xcast assumes that there is no packet
fragmentation. However, if fragmentation occurs (e.g. if the
group size or the data is too large) the fragmented packets
will not be identified as Xcast packets by routers. In this
paper we propose a generalized Xcast protocol to support
the group size increasing and to overcome the fragmentation
problem.

In section 2, we describe the Xcast protocol, the Xcast+
[12] protocol (which is an extension of Xcast), we present
the Xcast packets fragmentation problem and we compare
these two protocols with traditional multicast protocols. In
section 3, we describe the GX-cast protocol and we study
some parameters. In section 4, we evaluate GXcast in terms
of the number of generated packets, the duplicated packets
overhead, the global processing time and the average
supplement delay. Finally, we conclude in section 5 that the
GXcast protocol is feasible and promising.

2. THE XCAST AND THE XCAST+ PROTOCOLS

To solve the problems of traditional multicast protocols,
Boivie et al. proposed the Explicit Multicast protocol
(Xcast). In this section, we describe the Xcast he Xcast+
protocol (which is an extension of Xcast) and we compare
them with traditional multicast protocols.

2.1 The Xcast Protocol

The Xcast protocol [11] is a newly proposed multicast
protocol to support a very large number of small multicast
groups. To send data to a given group, the source first
explicitly encodes the list of destinations in the Xcast header
of the packet. Then, the source parses the header, partitions
the destinations based on each next unicast hop and forwards
a packet with an appropriate header to each of the next hops.
Each router along the path to destinations repeats the same
processing on receiving an Xcast packet. If a router detects
that there is only one destination in the destination list of a
packet, the packet is converted to unicast. The algorithm
realizing the conversion of an Xcast packet to a unicast
packet is called Xcast-to-Unicast (X2U). This packet is then
forwarded in unicast along the remainder of the route.

Example: consider the network represented on figure
1 and the group G formed from the source S and the six
destinations D1, D2, D3, D4, D5 and D6. The nation list
(D1, D2, D3, D4, D5, D6). S proceeds the packet and
remarks that R1 is the next unicast hop for all the
destinations. Consequently, S sends the Xcast packet to R1.
R1 receives the packet and proceeds it similarly. It forwards
the packet to the R2 router which also forwards it to
R3.While proceeding the packet, the R3 router remarks that
R4 is the next unicast hop for the two destinations D1 and
D2 and that R5 is the next unicast hop for the remaining
destinations D3, D4, D5 and D6. R3 sends to R4 an Xcast
packet containing the destination list (D1, D2) and to R5 an
Xcast packet containing the destination list (D3, D4, D5,
D6). Upon receiving the Xcast packet, the R4 router detects
that D1 and D2 are two separated hosts. R4 then generates
two unicast packets using the X2U algorithm and sends them
to D1 and D2. Upon receiving the packet, D1 extracts the

Figure 1: The Forwarding of Data in theXcast Protocol.
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data from the packet. The process is similar for routers R5
to R9 and for the five remaining destinations.

2.2 The Xcast + Protocol

Xcast+ is an extension of Xcast for a more efficient delivery
of multicast packets [12]. Every source or destination is
associated to a Designated Router (DR). Instead of encoding
in the Xcast packet header the set of group members, Xcast+
encodes the set of their DRs.When a new member wants to
join the group G of source S, it sends an IGMP-join message
[13] to its DR. The DR will send a join-request message to
the source S. The DR of the source intercepts this message
and analyzes it in order to keep track of all concerned DR
addresses.When the source S wants to send a message to
the group G, it sends a multicast packet.This packet is
received by its DR and converted to an Xcast packet using
the Multicast-to-Xcast algorithm (M2X). The packet is then
forwarded as in Xcast to all the DRs associated to the group
G, since the destination list in the Xcast header contains the
DR addresses instead of the member addresses. Then, each
DR converts the Xcast packet to a multicast packet using
the Xcast-to-Multicast protocol (X2M) and sends it in its
subnetworks.

and X2M algorithms are used. Between the DR of the source
and the DRs of the destinations, packets are forwarded as
normal Xcast packets.

2.3 The IP Fragmentation Mechanism

Due to physical reasons, every link can transfer only a limited
volume of information in each packet. The Internet protocol
(IP) [14] contains a mechanism called fragmentation which
makes this limitation transparent.

The fragmentation mechanism allows a packet to be cut
into fragments in order to be suitably transferred on a link.
Suppose that a router receives a packet. After having decided
on which link this packet should be forwarded, the router
checks the maximum capacity of this link which is the
Maximum Transmission Unit (MTU). If the packet is too
large and unless it is explicitly forbidden, the router cuts it
out in order to respect the following constraints:

• each resulting fragment is an autonomous IP packet,
with a valid IP header,

• each resulting fragment has a size less than or equal
to the MTU,

• the data is distributed between the fragments.
The algorithm used to fragment IPv4 packets is

explained in [14]. The IPv6 protocol also has a fragmentation
mechanism, described in [15]. Note that one goal of IPv6 is
to avoid the fragmentation. This will be discussed later.

2.4 Xcast Packet Fragmentation

Let us consider the Xcast packet fragmentation in a router.
Since the Xcast packet header may be large, two cases can
be considered as depicted on figure 3: either the whole Xcast
packet header is short enough to be kept in the first fragment,
or the Xcast header has to be cut out.

In both cases, the second fragment is not a valid Xcast
packet since it has no Xcast header. Thus, these packets
cannot be forwarded (Xcasted) to the receivers and the data
they contain is lost. Moreover, in the second case the first
fragment contains only a subset of receivers and no data.
The first fragment may however be forwarded up to the
mentioned receivers, inducing meaningful traffic.

These problems show that the fragmentation of an Xcast
packet should be forbidden. This can be done in IPv4 by
setting the appropriate flag (Don’t Fragment, DF) in the IP
header. If a packet having the DF flag set and has to be
fragmented by a router, it is simply dropped. In order to
reach the receivers, the source has to limit the size of its
packets to 576 bytes which is the minimum MTU guaranteed
by IPv4 on any link. This size limits the number of receivers
in an Xcast group to 134. In IPv6, since the minimum MTU
is 1280 bytes and since IPv6 addresses are stored using 16
bytes, the limit in the size of the Xcast group is 76. Having
these limits hardly coded in protocols is restrictive. What
we propose is a simple mechanism to cancel these limitations
in the size of Xcast groups. The performance and the
scalability of our proposition will be analyzed.

Figure 2: The Forwarding of Data in the Xcast+ Protocol

 

Example: consider the same network represented on
figure 2 and the group formed from the source S and the
five destinations D1, D2, D3, D4 and D5. Suppose that D6
is a new member which wants to join the group G. D6 initiates
the join of the group by sending an IGMP message for the
group (S,G). The DR of D6, R9, receives the join request
and sends a registration request message toward S. When
the DR of S, R1, receives the registration request message,
it sends back to R9 a registration reply message and does
not forward the registration request message to S. Thus, R1
is able to know dynamically the set of DRs of the receivers
and can fill the destination list of Xcast packets on receiving
multicast packet from S. The figure 2 shows where M2X
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2.5 Comparison between Explicit Multicast Protocols
and Traditional Multicast Protocols

Traditional multicast protocols and explicit multicast
protocols are two different approaches designed to handle
multicast groups. We will try to emphasize the main
advantages of each method, compared to the other one.

2.5.1. Drawbacks of explicit multicast protocols: In
addition to the important Xcast packet fragmentation
problem, other related drawbacks also exist.

Limitedpayload Packet size is limited as a result of
network MTU. In explicit multicast protocols, the larger the
list of destinations is, the lower the payload is. As a
consequence, more packets should be generated to transmit
a given amount of data.

Complex header processing In explicit multicast
protocols, each destination in the header needs a routing table
lookup. A packet with n destinations in the list of destinations
will require n  + 1 unicast routing table lookups1.
Additionally, a different header has to be constructed per
next hop. However, it can be noticed that since such protocols
are typically designed for sparse sessions, there will be a
limited number of branching routers compared to non-
branching routers. The construction of different headers only
occurs in branching points. The header processing can
moreover be reduced to a simple operation: the modification
of a bitmap.

2.5.2. Advantages of explicit multicast protocols:
Explicit multicast protocols make easier some aspects of the
routing of multicast packets. It has many advantages over
traditional multicast protocols.

Routing state and signalisation messages management
in explicit multicast protocols, routers do not have to
maintain a state per group. Indeed, there is no multicast
forwarding table since only unicast tables are used. This
makes the Xcast protocol very scalable in terms of the

number of groups that can be supported simultaneously since
the routers in the network do not need to disseminate
information for the groups.

Automatic reaction to unicast reroutes and simplified
traffic engineering explicit multicast protocols react
immediately to unicast route changes. Traditional multicast
protocols need to exchange information with unicast
protocols in order to have an adequate reaction. This is
achieved on a polling basis in many implementations,
yielding a slower reaction to e.g. link failures. This delay
may also depend on the number of concerned groups. In
addition, there is no need for a specific multicast traffic
engineering tool since packets follow traffic engineered
unicast paths.

Easier security and accounting in explicit multicast
protocols, the source has a complete knowledge about
members (or about DR members). It will be able to drop
dynamically some members and a border router can be able
to determine approximately how many times a packet will
be duplicated in its domain (especially when link-state
protocols like OSPF [16] are used in the domain).

Other advantages can be mentioned:
• No multicast address allocation is needed except

eventually in the DR of the source in the case of
the Xcast+ protocol.

• Shortest path is always used even in an asymmetric
network.

3. THE GXCAST PROTOCOL

As explained in the previous section, the Xcast protocol can
not support large groups due to its incompatibility with the
IP fragmentation mechanism. In this section, we propose a
generalized Xcast routing protocol, the GXcast protocol,
which is designed basically to avoid the fragmentation.
Moreover, the GXcast protocol can be parameterized in order
to improve the Xcast behavior.

3.1 The GXcast Protocol

The GXcast protocol is a simple generalized version of the
Xcast protocol: instead of sending a message to the n
destinations, the source limits the number of destinations in
a packet to n

M
. Thus, the list of n destinations is divided into

sub-lists of at most n
M
 destinations. Each sub-list corresponds

to a destination list for an Xcast packet. Several packets may
have to be sent in order to deliver data to all the n
destinations.

n
M
 is the parameter of the GXcast protocol and it impacts

the protocol performance in terms of several criteria. The
choice of nM is justified in section 3.2. GXcast packets are
similar to Xcast packets: they have the same header and are
treated in the same way by intermediate routers, DR
destinations and user destinations. The only difference
between the Xcast protocol and the GXcast protocol appears
in the source or in the DR of the source. The Xcast protocol
and the GXcast protocol can therefore interperate easily.

Figure 3: Fragmentation of Two Different Xcast Packets.
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Example: consider the same network represented on
figure 4 and the group formed from the source S and the six
members D

1
, D

2
, D

3
, D

4
, D

5
 and D

6
. As in the Xcast+

protocol, the DR of the source keeps track of only the three
DRs representing the subnetworks that contain all the
destinations: R

4
, R

8
 and R

9
. For this example2, n

M
 is fixed to

2. The source sends a multicast packet to its DR, R
1
. R

1

translates it from a multicast packet to an Xcast packet using
the M2X algorithm. R

1
 notices that there are three

destinations in the list for the next hop. Since n
M
 equals to

2, this list is divided into two sub-lists: one contains the first
two destinations R

4
 and R

8
 and the second contains the last

destination, R
9

3. Each generated packet is treated as a normal
Xcast packet as shown on figure 4.

3.2 Study of the GXcast Parameter

The behavior of the GXcast protocol greatly depends on the
value of the nM parameter. Indeed, as we will see in this
subsection, there is a number of criteria that are directly
influenced by the chosen value. In the following, we will
denote by MTU the value of the MTU which depends on the
IP version used, by E the size of the IP header plus the size
of the Xcast header (typically 16 bytes) and by IP the size
of an IP address. n will represent the number of destinations
in the group and d the volume in bytes of data to transfer.

3.2.1. Simple behavior: As we have seen in subsection
2.3, since a packet has to contain at least one byte of data,
the maximum number of destinations n

max 
allowed in an Xcast

packet is defined as:

max

1MTU E
n

IP

� �� �� � �� �
The values n

max
=134 and n

max
=76 cor respond

respectively to the IPv4 and to the IPv6 specifications. The
simplest behavior GXcast can adopt is to fix the n

M
 value to

Figure 4: The Forwarding of Data in the GXcast Protocol

the n
max

 value. However, this is not efficient for groups having
a lot of members (typically more than n

max
). For example,

suppose that IPv6 is used and suppose that n=70 members
have joined the group. Each message can contain only 104
bytes of information4. In order to send a volume of 10000
bytes, 97 packets are needed. However, less packets would
be the result of a better choice of n

max
. Choosing n

max
 equals

to 38 allows 616 bytes per packet, which results into the
emission of only 34 packets to reach the n destinations, which
is approximately three times less.

3.2.2. The number of members influenced by a fault: If
a drop occurred on a GXcast packet, every member having
its address in the member list will be concerned by the drop.
To reduce the number of destinations concerned by such
errors, small values of n

max
 should be chosen.

3.2.3. Number of generated packets: Considering a
group of n destinations and a volume of d bytes to transmit
to these members, the number of packets p(n, d, n

M
) sent by

the GXcast protocol with a parameter of n
M
 is defined as:

( , , )
*M

M M

n d
p n d n

n MTU E IP n

� � � �
� � � � �� �� � � �

( , , )
.min( , )M

M M

n d
p n d n

n MTU E IP n n

� � � �
� � � � �� �� � � �

Recall that in the GXcast protocol, the list of n
destinations is cut out into sub-lists of size at most n

M
. The

left part of the expression of p represents the number of sub-
lists that will be generated by the GXcast protocol. The right
part of the expression of p represents the number of packets
needed to transmit the d bytes of data. In order to study the
behavior of p in terms of n

M
, we will consider two

cases: Mn n�  and Mn n� . In the first case, we have:

( , , )
.M

d
p n d n

MTU E n IP
� �� � �� �� �

This expression of p does not depend on n
max

. The
GXcast protocol behaves in this case in the same way than
the Xcast protocol. In the second case where , we propose
to study the behavior of the function which is an
approximation of the p function and is defined by:

( , , )
.

�
� �M

M M

n d
p n d n

n MTU E IP n

Since we have

2

( , , ) 2. .
.

. . .

� �
� �

� �
M M

MM M M

p n d n MTU E IP n
n d

n MTU n E n IP n

�
�

the p  function admits a minimum value for:

Since this optimal value does not depend on n and on d
and since it is very simple to calculate it and provides good
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results in terms of the number of generated packets, we
propose it as a default value for the GXcast protocol.

4. GXCAST EVALUATION AND SIMULATION

In this section, the GXcast protocol is evaluated in terms of
scalability (generated packets cost overhead) and efficiency
(delay from the source to destinations and global processing
time).

4.1 The GXcast Cost Overhead Rate

The number of generated packets by GXcast depends of the
three parameters n, d and n

M
. The choice of the value of nM

has been justified in the paragraph 3.2. Let us note that a
traditional multicast routing protocol

sends ( , )
� �� � ��� �

d
p n d

MTU E
 packets to deliver d data bytes

to a group of n members5. We define /pGXcast multicast�  as the

cost overhead rate generated by the GXcast protocol
compared to a traditional multicast routing protocol and we
distinguish the two cases: n

M
 � n and n > n

M
.

max

/

max max

max

max

( , , )
2

( , )

2* 2*
2*( ) *

2* 2*

4*

�
�

� � � �
� � � �� �� � � ��

� �
� ��� �

� � � �
� � � �� � �� �� �� � � �� � � �

� ��� �

M

pGXcast multicast

n
p n d n

p n d

n d

n MTU E n IP

d
MTU E

n d

n MTU E n

d n
MTU E

�

For : n � n
M
 :

/

( , , )

( , )

*

*

�

� � � �
� � � �� �� �� ��

� �
� ��� �

� �
� �� �� ��

� �
� ��� �

M
pGXcast multicast

M

p n d n

p n d

n d

n MTU E n IP

d

MTU E

d
MTU E n IP

d

MTU E

�

Figure 5 presents the number of packets generated by
the GXcast protocol compared to the number of packets

generated by a traditional multicast routing protocol for
n � n

M
 . We notice that the value of cost overhead rate does

not exceed the value of 2 and that in the majority of cases
this value is equal to 1, which implies that the cost overhead
generated by the GXcast protocol is small if the number of
receivers is lower than n

M
.

For n > n
M
 :

/

max max

max

max

( , , )
2

( , )

2* 2*
2*( ) *

2* 2*

4*

�

� � � �
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� �
� ��� �

� � � �
� � � �� � �� �� �� � � �� � � �

� ��� �

M

pGXcast multicast

n
p n d

p n d

n d

n MTU E n IP

d
MTU E

n d

n MTU E n

d n
MTU E

�

Figure 5: The Cost Overhead Rate of the Protocol GXcast
Compared to a Traditional Multicast Routing Protocol
in Terms of n and d for n � n

M
.

The cost overhead rate of the protocol GXcast compared
to a traditional multicast routing protocol in terms of n and
d for n � n

M
.

Figure 6 presents the number of packets generated by
the GXcast protocol compared to the number of packets
generated by a traditional multicast routing protocol for
n > n

M
.

We notice that the cost overhead rate is small if the
payload size is lower than 250 bytes. Moreover, we notice
that this rate is almost linear according to n: for a group of
150 members, it will be necessary to send approximately 5
times more packets with the GXcast protocol than with a
traditional multicast routing protocol. For a group of 300
members, it will be necessary to send 10 times more packets.
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To transmit to respectively n = 150 and n = 300 receivers
a message of d = 1000 bytes, a protocol based on unicast
messages would have required 300 and 600 packets, which
is respectively 150 and 300 times more than a traditional
multicast routing protocol6. It should be noted that a
traditional multicast routing protocol requires the presence
of multicast routing states in all the routers on the multicast
trees of the various group. Also, control packets are
permanently sent between routers on a tree to maintain these
routing states. In Gxcast, no need for multicast states in
routers neither for signaling messages between these routers.

To send d bytes of data to n members of a group, the

number of packets ( , )Xcastp n d  generated by the Xcast

protocol is defined by the following formula in both cases:

max

( , )
*

*( )

� �� � �� �� �
� �

� � ��� �

Xcast

d
p n d

MTU E IP n

d

IP n n

For max

2
�

n
n , the two protocols GXcast and Xcast

generate the same number of packets, therefore the cost
overhead rate of the GXcast protocol compared to the Xcast
protocol is equal to 1.

Figure 6: The Cost Overhead Rate of the Protocol GXcast
Compared to a Traditional Multicast Routing Protocol
in Terms of n and d for n > n

M
.

The GXcast protocol and unicast to send d data bytes

to n members of a group, the number of packets ( , )Unicastp n d

generated by the source by using the unicast transmission
mode is defined by the following formula:

( , ) * ( , ) *
� �� � � ��� �

Unicast

d
p n d n p n d n

MTU E

Figure 7 presents the number of packets generated by a
unicast routing protocol compared to the number of packets
generated by the GXcast protocol. We noticed that the value
of the rate of cost overhead is very high what implies that
the cost overhead generated by a unicast protocol compared
to GXcast becomes very significant if the number of
receivers increases.

The GXcast protocol and the Xcast protocol we consider
two cases only since the Xcast protocol is unable to manage
a group having more n

max
 members:

max max
maxand

2 2
� � � �M

n n
n n n n

Figure 7: The Cost Overhead Rate of a Unicast Routing Protocol
Compared to the GXcast Protocol in Terms of n and d.

For max
max2

� �
n

n n , we have:

max

max max

max
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Figure 8 presents the number of packets generated by

the GXcast protocol to the number of packets generated by
the Xcast protocol. It should be noticed that the value of the
cost overhead rate never exceeds 2 and that in the majority
of cases this value is largely smaller than 17 which implies

that /pGXcast Xcast�  can according to the size d takes values � 1

and thus GXcast generates less packets than the Xcast
protocol.

Thus, the study of [18] shows that typically the mean
packet size of server generated traffic is approximately 127
bytes with a coefficient of variation of 0.73. Moreover, around
99% of all packets are smaller than 250 bytes and no packet
is larger than 1500 bytes. Most of server packets with a 1000
bytes size are assigned to gameplay interruptions (for example
due to an end of turn or a change of scenario in which cases
more information has to be transferred to the players). The
client traffic is characterized by an almost constant size of
packet. The mean packet size of the clients is of 82 bytes with
a coefficient of variation of 0.12. Moreover, 99% of all packets
range between 60 and 110 bytes.

Another study [19] on networks games shows that the
mean packet size of server generated traffic is approximately
130 bytes while that of the client is about 40 bytes. The mean
packet size of packets received and sent by the server is about
80 bytes. This study showed that over one week period,
16000 clients (average of 95 players per hour) established a
connection with the server (they took part in the play) and
8000 were refused (since the server reached its limit of
connections).

Same as network games, in applications like distributed
interactive simulation (DIS) [20], informations on a virtual
environment are exchanged between various machines in a
distributed system. That makes possible to simulate the
behavior of the objects in this environment. The objects are
capable of physical interactions between them and can detect
the other objects by the visual one or other means (infra-
red, etc.).The DIS real time flow is made of packets of size
of 2000 bits (250 bytes) and normally transmitted by using
the UDP transport protocol [20].

4.3 The Simulation Scenario

We used NS [21] to develop our simulator of SGM protocols.
This simulator can be used by researchers who want to test
various types of protocols of explicit multicast routing. It is
the only one to our knowledge which exists in the field.

We used the Abilene network [22] as a test network and
we chose 5 as average value of the number of edge routers
by Abilene node. With each of the 5 edge routers 5 possible
destinations are connected8. Our network thus contains 341
nodes, connected by bidirectional links of 10 Gb/s with a
delay time that varies between 2ms and 12ms in the network
core and by bidirectional links of 155 Mb/s with a delay
time of 0.3ms to 0.5ms in the remainder of the topology
(between the Abilene nodes and the edge nodes as between
the edge nodes and the destinations) (cf. figure 9).

We consider only one multicast group having a source
belonging to a sub-network and n receivers (in the other sub-
networks). The receivers join and leave randomly the group.
The maximum number of receivers per GXcast packet is 70

(near to max

2

n
)9. We chose our simulation parameters by

considering applications like DIS and networks games. Table
1 recapitulates the parameters used in the simulation.

Figure 8: The Cost Overhead Rate of the GXcast Protocol
Compared to theXcast Protocol in Terms of n and d.

4.2 Network Games Kind Applications Parameters

The GXcast protocol can be interesting, useful and promising
for applications like network games and distributed
interactive simulations. Indeed, the observed game traffic
always follows the following transmit cycle: the server sends
the game state information to each client (player) where
packets are read and processed. The clients synchronize the
server game with their local game state, process players
commands and return update packets with the player’s
movement and status information. Both update and server
information are usually of very small size since they only
contain movement and status information.
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Figure 10 represents the estimated number of packets
(according to the quantity of data (d) to be transmitted) to
be generated by the source while figure 11 represents the
effective number of packets generated by the source.

where N
l
 is the number of links, ( )paq iN l  is the number of

packets on the link l
i
, L

pj
 is the size of a packet pj, D

li
 is the

throughput of the link l
i
 and t

sim
 is the duration of simulation.

We make this distinction between � and � because even
if the number of packets generated by the source with the
GXcast protocol is higher than that the number of packets
generated with the Xcast protocol, the size of a GXcast
packet is smaller or equal than that of an Xcast packet.

We make an assumption that the throughput of all the
source or destination links are identical and all the network
core links have identical throughput. We have chosen to
analyse these characteristics (i.e. number of packets and
quantity of data) on 3 critical points of the network: on the
source link, on the destination link, on the network core link.
We will see how GXcast behaves on these critical points.
Thus, we consider only the number of circulating packets
and the quantity of data transmitted in each link during each
simulation. Figures 12 and 13 respectively represent the
number of packets and the quantity of data transmitted on
all the links of the network of the source. Figures 14 and 15
represent respectively the number of packets and the quantity
of data transmitted on all the links of the network core.
Figures 16 and 17 respectively represent the number of
packets and the quantity of data transmitted on all the links
of the networks of the receivers.

Figure 9: An Abilene Network Nodewith Edge and Destination
Nodes.

 

Table 1
The Simulation Parameters for the GXcast Protocol

d 80, 130, 250, Data size to be transmitted to each
1000 receiver

n 80, 90, 100, 110, Number of destinations per group
120,130

n
M

70 Maximum number of destinations
in a GXcast packet

The horizontal axis represents the number of packets
generated by the source and the vertical axis represents the
number of receivers (n that varies from 80 to 130) in a group.

We notice that the effective number is equal to the
number estimated except the case where d = 1000 bytes.
This is due to the fact that formula (1) supposes that the
packets generated by the source for n receivers in GXcast
contain nM receivers. Let us take the case where

2*� �M Mn n n : the source generates a packet of n
M

receivers and another of n-n
M
 receivers and thus this last

can contain more data than the first.
To measure the cost of generated packets, we define ,

the estimator of the average charge of the network by link
and , the average load factor of the network by link by the
following equations:
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� Figure 11: The Number of Packets Generated by the Source with
the Protocols GXcast and Xcast.
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GXcast and Xcast behavior at the source network we
notice initially that the Xcast protocol is unable to manage
groups having more than 100 members and especially for a
payload greater than 250 bytes. For this type of groups, we
notice that not only the GXcast protocol generates less
packets than the Xcast protocol but also that the data volume
transmitted through the source network is much smaller than
that of Xcast. For a payload of 80 to 130 bytes, and although
the GXcast protocol generates twice more packets in the
source network, the cost overhead generated by the GXcast
protocol in term of transmitted volume is weak. Indeed, this
ratio decreases since the size of data transmitted with the
GXcast protocol is lower than twice the size of data
transmitted with the Xcast protocol.

GXcast and Xcast behavior at the core network we
notice that in spite of the fact that the number of packets
transmitted by the core network with the GXcast protocol is
higher than the number of packets generated with the Xcast
protocol, the volume transmitted through this network core
is smaller than the data volume generated with the protocol
Xcast and thus the GXcast protocol behaves better than the
Xcast protocol in the core network. This constitutes an
advantage for the GXcast protocol since with the GXcast
protocol we reduce the cost of the tree inside the core
network. For the groups of less than 100 members and for a
payload of less than 130 bytes, the GXcast protocol has a
behavior similar to the Xcast protocol and however
sometimes it generates a light overhead.

GXcast andXcast in the networks of the receivers finally,
we notice a clear reduction of the number of packets and
volume transmitted over the networks of the receivers with
the GXcast protocol compared to the Xcast protocol. This
is due to the fact that each receiver will receive an Xcast
packet of fixed size while the GXcast packet intended for
the same receiver have a smaller size, which reduces the
total data volume transmitted through the networks of the
receivers.

Currently, many network games send their data using
unicast packet. After we noticed that the cost overhead comes
from the size of the packets and that the number of packets
cannot be considered as the only factor of cost overhead,
we made a comparison with a unicast routing protocol.
Indeed, with a unicast routing protocol, the source sends a
separated packet to each receiver but the size of this packet
is smaller than the size of a GXcast packet as soon as the
number of members of the group exceeds a few units. It
should be noted that the number of generated GXcast packets
is smaller than that in unicast. Since the GXcast protocol
and the transmission in unicast mode can support more than
130 members limited by the Xcast protocol, we use the 3
following values: 90, 140 and 190 receivers in a group.
Indeed, these values were selected by supposing that the
number of receivers in a network game will double: from
95 per hour to 190 per hour. We take the same simulation
parameters than previously. Thus, figures 18 and 19
respectively represent the number of packets and the quantity
of data transmitted on all the links of the source network.
Figures 20 and 21 represent respectively the number of
packets and the quantity of data transmitted on all the links
of the core network and figures 22 et 23 respectively
represent the number of packets and the quantity of data
transmitted on all the links of the receiver’s networks. The
horizontal axis represents the number of packets or the
quantity of transmitted data and the vertical axis represent
the number of receivers belonging to a group. The axes with
the label “Unicast” represent the values obtained by using
the transmission in unicast mode.

GXcast and Unicast in the source network we notice,
first of all, that the number of generated packets is much
higher with the Unicast protocol than with the GXcast
protocol. This cost overhead is confirmed with the volume
transmitted through the network of the source. With the
selected parameters we notice that by using GXcast we
reduce 20 times the cost of the links of the source network.
This constitutes a major advantage since the links near the
sources are not always able to support a significant load and
that is why we have an interest to transmit in multicast mode
instead of unicast mode.

GXcast and Unicast in the core network the advantage
of the use of the GXcast protocol instead of a protocol using
the transmission in unicast mode appears once again in the
core network. Indeed, the number of packets which crosses
the network core is about 15 times more significant with the

Figure 13: The Transmitted Volume in the Source Network with
the Protocols GXcast and Xcast
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Unicast protocol than with the GXcast protocol. Transmitted
volume is about 7 times less and can reach 12 times less
with the GXcast protocol than that with the Unicast protocol
according to the data payload.

GXcast and Unicast in the networks of the receivers
finally, in the networks of the receivers, the number of
packets transmitted with the GXcast protocol is less than
with the Unicast protocol. This is an expected result since
GXcast uses only one packet for nM receivers while Unicast
uses a packet for each receiver. But this high number of
packets is not translated into transmitted volume, since the
size of a unicast packet is smaller than the size of a GXcast
packet. We deduce that the Unicast protocol has more
advantages on the GXcast protocol in the networks of the
receivers.

Figure 15: The Transmitted Volume in the Core Network with the
Protocols GXcast and Xcast.

 

4.4 The Study of the Delay of the GXcast Protocol

Most popular network games sell millions of copies. Most
multi-player games support network play over a LAN or over
the Internet. When playing a game over the Internet, most
players will log on to the network from home using a dial-
up PPP connection via a modem. The high latencies that are
common on the Internet (typically 50-150ms roundtrip delay)
as well as the even higher latencies that modem connections
exhibit (typically 150-400ms roundtrip delay) results in a

large user base that is very concerned with network delay.
Game players refer to these delays as “lag”, due to the
deleterious visual impact that it has on their games. Video
applications (such as Internet telephony or  video-
conferencing) require roundtrip delays of less than about
300ms. However, very few individuals using telephony can
tell the difference between 50ms and 150ms of roundtrip
delay. Game players have found that the difference between
50ms and 150ms of delay can determine who wins or loses
a game [23].

The delay is the time passed between the sending of a
packet by the source and its reception by the receiver. To
illustrate the impact of the header processing cost of a
GXcast packet, we briefly discuss the various delays added
to a packet while it is passing from a node to another in a
network. The delay contains the header processing time of a
packet within a node, propagation delay along the way (time
necessary to send a packet on a link), delay transmission
(time necessary to send (to inject) a packet to a link) and
queue (time that the packet passes in the queue before it can
be sent) induced by the setting in queue of the packets in the
intermediate systems (cf. figure 24).

Table 2 shows a simple calculation of these delays for
links of 200 km and 1 Gb/s, and packets of size 1250 bytes.
In the majority of cases, the principal delays are the

Figure 17: The Transmitted Volume in the Destinations Network
with the Protocols GXcast and Xcast.
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propagation and queuing delays and are thus considered in
simulations and measurements. The delay of transmission
is generally small for fast links and small packets and is not
thus considered. Traditionally (the column “Simple routing”
of Table 2), the processing delay is also negligible. However,
the processing of a packet can take considerable values when
ever the modification of the payload is necessary (as in IPsec,
where one needs approximately 100 instructions by bytes
of payload) [24]. Consequently, the processing can contribute
not less than 50% of the total processing delay of a packet
(the column “Complex modification of the payload” of
Table 2).

Figure 19: The Transmitted Volume in the Source Network with
the Protocols GXcast and Unicast.

 

Table 2
The Various Delays for a 1Gb/s and 200 km Link, a Packet of

10kb Size and a 100MIPS Processor

Delay Simple Packet Complex Payload
Forwarding modifications

Processing delay 10 �s 1000 �s

Propagation delay 1000 �s 1000 �s

Transmission delay 10 �s 10 �s

Queuing delay 0.. � �����

4.4.1. Global processing time: We define the protocol
global processing time as the sum of packet header
processing times for every packet needed to send a fixed
amount of data. The global processing time for a GXcast
packet having n

M
 destinations is approximately

1 2nM Mt n� �� � , where 1�  is the IP and GXcast header

processing time and 2�  is the processing time for an entry

in the list of destinations (lookup in routing table, creation
of packets per outgoing interface, etc.). We have then:
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The t
G
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M
) function is strictly decreasing and admits a

minimum for n
M
 = n

max
. Meanwhile, choosing n

M
 = n

max
 is

not realistic as shown in section 3.2.1 and 3.2 since this value
does not take into account the quantity of data effectively
transported. Meanwhile, choosing a small value for
n

M
 = n

max
 greatly increases the global processing time as a

Figure 21: The Transmitted Volume in the Core Network with the
Protocols GXcast and Unicast
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result of the high number of generated packets and the global

processing time. The default value of n
M
 = n

max
,

max

2

n
 , leads

to a global processing time which is very close to the optimal
one and is therefore a good compromise.

However, in our study on the delay, nMt  represents the

processing time (in the processor of the node) for a GXcast
packet while the value of t

G
(n

M
) is included in an indirect

way in measurement of the latency in the queue of the node.

It is clear that nM nt t�  if Mn n�  and nM nt t�  if Mn n� .

4.4.2. The additional delay compared to the protocols
Xcast and Unicast: The total packet routing delay is the time
a packet needs to reach its destination starting from the
source. It greatly depends on the number of packets in the
routers queues and the packet header processing time of each
one of them. The difference in delay perceived by the end-
user (i.e. the receiver) plays a significant role in the choice
of the protocols.

Let us denote by T the multicast tree (in our case it is
the set of paths followed by GXcast packets) from a source
S to all destinations. The list of destinations will be denoted
by L. Given a network represented by a weighted directed

graph ( , , )G V A ��  where V denotes the set of nodes, AA

the set of arcs and � the delay-link function10 : : A� ��� .

Let P
T
 (S, v) denotes the unique path from the source S

to the destination v ��L11, in the tree T, such that:

,
( , )

( ), for all ,
T

T v
l P S v

l v L� �
�

� ��

where �
T,v

 is the delay for a destination v in the tree T .

We define the average global delay for a protocol P by:
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�

We define the average additional delay ( )P��  for a

protocol P compared to the GXcast protocol by the following
quation:

( ) ( ) (GXcast).g gP P� � �� � �

This average additional delay measures the delay
overhead compared to the GXcast protocol.

In order to measure the average,minimum and maximum
additional delays introduced on the level of the receiver by
the useful load variation, the GXcast protocol was
implemented under the network simulator (NS) with the same
simulation parameters described previously. Thus, figures
25 and 26 respectively represent the additional delay
(average, minimum and maximum) of the protocol Xcast
compared to the GXcast protocol and that of the Unicast
protocol compared to the GXcast protocol.

The additional delay of theXcast protocol compared to
the GXcast protocol we notice first that the average,
minimum and maximum additional delays are positive in
the majority of cases. That is an advantage of the GXcast
protocol on the Xcast protocol. We also notice that the curve
of delay grows quickly with the growth of the number of
members in a group. We notice that whenever GXcast is
less powerful than Xcast, the additional delay of GXcast
compared to Xcast does not exceed 10¼s while in the
majority of the other cases Xcast largely exceeds these
values.

Figure 23: The Transmitted Volume in the Destinations Network
with the Protocols GXcast and Unicast.

 

Figure 24: The Various Delays in a Node of the Network.
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The additional delay of the Unicast protocol compared
to the GXcast protocol We notice that the GXcast protocol
is faster than the Unicast protocol everywhere.

4.4.3. Using Path MTU instead of minimum MTU: In
all this paper, we defined MTU as the minimum MTU
guaranteed by IP. However, the value of the Path MTU
(PMTU [25]) can also be used since we don’t make any
assumptions on the stability of the MTU value in our study.
The PMTU is the minimum value of the MTU on the links
of a path. It can be noticed that the PMTU value is easy to
obtain in GXcast, since unicast paths are used12.

5. CONCLUSION

A significant share of today’s Internet traffic is generated
by network gaming. This kind of traffic is interesting in
regard to it’s market potential as well as to it’s real time
requirements on the network. Distributed interactive
simulations and other network games fit into the multicast
applications. The Xcast and Xcast+ protocols permit to
manage efficiently a large number of small multicast groups.
A major drawback for these protocols is that they are
incapable to manage packet fragmentation. Consequently,
there is a limit for the multicast group size. In this paper, we
proposed an extension to these protocols, named the GXcast
protocol.

The GXcast protocol make possible to solve the
fragmentation problem and optimizes some criteria like
sending less packets and minimizing the header processing
time in routers. At the end of the study of this protocol, we
showed that GXcast manages easily with a reduction of the
cost and time, a great number of groups of average size,
even when the members are disseminated on a few hundreds
of sub-networks. We concluded that the GXcast protocol is
a feasible and promising protocol and very adequate to
network games applications kind.
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