Journal of Information Technology and Engineering
Vol. 1 No. 2 (December, 2016)

Predicate Abstraction of C Programs

V. K. Pachghare!

!|_ecturer, Computer Engineering & 1T Department, College of Engineering, Pune
(An Autonomous Institute of Government of Maharashtra, India) E-mail: vkp@comp.coep.org.in

Received: 03rd March 2016 Revised: 14th July 2016 Accepted: 20th August 2016

Abstract: Typically, software contains millions of lines of code which presents a major challenge for program analysis and
related techniques such as model checking. Analyzing such large code is expensive in terms of space and time. Predicate
abstraction is a technique that generates an abstract of the original program using a set of predicates. Such an abstract or
reduced code preserves all the properties of the original program. It isachieved through a technique called programslicing
which eliminates all theirrelevant parts of the original program with respect to the set of predicates. Moreover, the abstract
code can be used as an input to a model checker to prove properties of programs. Thisisvital since a model checker accepts

only a finite state system.

This paper covers concepts related to predicate abstraction and our approach to building the predicate abstraction tool for
C programs. It also illustrates how this tool is unique as compared to other tools in the software industry. The important
applications of the tool along with the challenges faced are covered in brief as well.

Keywords: Predicate Abstraction, Program Sicing, Approach, Challenges

1. INTRODUCTION

Program analysis refers to the process of collecting
information about a program. Program analysis is a key
component of many applications and software devel opment
processes. It isrequired for applications such ascompilers/
decompilers, reduces costs of program maintenance and
increases effectiveness of program testing.A growing
commercial use of program analysisisin the verification of
properties of software used in safety-critical computer
systems and | ocating potentially vulnerabl e code.

Model checking is a technique related to program
analysis which is used to prove properties of finite state
systems. However, generally programs contai n thousands of
lines of code which results in infinite state systems. Such
infinite state systems cannot be given asinput to the model
checker (model checking tool) due to memory restrictions.
Thus there arises a need to abstract the original program
with respect to a set of predicates to generate a finite state
system that can fit into the model checker. The generated
abstraction is such that it preserves the behaviour of the
original program. Such an abstraction is called Predicate
Abstraction. There are many important applications of
predicate abstraction viz. deadlock detection, divide by zero
detection, etc.

2. PREDICATE ABSTRACTION

Predicate abstraction is a technique that is used to prove
properties of infinite state systems. It is a combination of

theorem proving and model checking techniques. Given a
concrete infinite state system and a set of abstraction
predicates (points of interest in a particular program,
expressed asvariables), aconservativefinite state abgtraction
is generated. Predicate abstraction is conservative in the
sense that for every execution in the concrete system there
isacorresponding execution in the abstract system.

Abstraction may be very coarse .So we need to refine
it. However, abstraction is expensive. Moreover the
reachable state space of a program isgenerally sparse. Hence
we use refinement only whererequired by constructing the
abstraction ‘on the fly’ driven by the search.

This gave rise to Lazy abstraction. Lazy abstraction
continuoudly builds and refines a single abstract model on
demand just enough to verify the desired property. When
applying iterative abstraction refinement, we must strike a
delicate balance between the accuracy of the abstraction that
isproduced and the speed at which it isgenerated.

R
: * (Parser * Predicate — Abstract of
Abstraction Onginal
Frogam Tool Program
Set of
Predicates

Figure 1: Componentsin C Programs

62

The block diagram shown in figure 1 shows the

componentsinvolved in predi cate abstraction of C programs.

1. C Parser: It takes a C program as its input and
generates an intermediate representation (IR).

2. Predicate Abstraction Tool: Thisisresponsible for
analyzing the whole program and generates an
abstract version of the program. It takes the
intermediate representation of the C program and
aset of predicates which generates the abstract of
the program asits output.

Predicate abstraction involves a technique called

program dlicing.

3. PROGRAM SLICING

Program dicing isatechniquefor simplifying programs by
focusing on selected aspects of semantics. The process of
dicing deletes those parts of the program which can be
determined to have no effect upon the semantics of interest.
Figure 2 givesthe programmers view of adlice.
Slicing could be of various types:
1. Satic: identifiesall program code that can in any
way affect the value of a given variable
2. Dynamic: Dynamic information(input to the C
program) isgiven to compute the slice along with
the information to computethe static dlice
3. Conditioned: Slice computed with respect to certain
conditions whose result isknown.
Our paper will be dealing with static dicing.

Figure 2: Programmer’s View of a Slice

3.1 Satic Slicing

There are many forms of slice, soit will be helpful to start
off with a smple form of dice; the static dice. The other
forms of dice can be thought of as augmentations of this
static form.

A slice is constructed by deleting those parts of the
program that areirrelevant to the values stored in the chosen
set of variables at the chosen point. The point of interest is
usually identified by annotating the program with line
numbers which identify each primitive statement and each
branch node.

The point of interest will be indicated by adding a
comment to the program. In general slices are constructed
for asat of variables, butin thisarticleonly slice constructed
for a single variable will be considered. Thus, given a
variablevand apoint of interest n, adicewill be constructed
for vat n. Thisisnot regtrictive, becausethe dicewith respect
to a set of variables V can be formed from the union of the
diceson each variablein V.

Simple example of static slicing is given bel ow:

Void main{) Void maini)

{ {
int 1,j.k; int Lj;
F2 iF2;
i=j; i=j;
k=3; printfi{ %ed®,i):
printf{*%d®,i); }
printf{“%d”,k});

}

A:0riginal program B:Sliced Program

Slicing Criteria: Variable ‘i’

Explanation: In the above example, A is the original
program and B is the corresponding sliced program with
the dicing criteriaas variable ‘i’. Asit can be clearly seen
the assignment k=3 and the print f(“%d" k) bears no
relevance to the value of ‘i’. Hence, these statements are
del eted to obtain the sliced program, B.

4. WORK DONE IN THISFIELD

Microsoft hasbeen doing alot of research in thisfied. SLAM
project isan example of the work they havedone. Theaim of
the SLAM project was to prove correctness properties of OS
devicedrivers by using predicate abstraction.

Berkeley University has made significant contributions
to this field. BLAST (Berkeley Lazy Abstraction Software
Verification Tool) constructs an abstraction of the original
system ‘on thefly’ only according to thereachable statesin
theprogram.

MAGIC (Modular analysis of programsin C) follows
the counterexampl e guided abstraction refinement paradigm.

All these approaches combined abstraction along with
the model checking toolsto prove program properties.

5. OUR OBJECTIVE AND APPROACH

Work that has been donein this area has combined dicing
along with model checking. Our objective hereisto create

Predicate Abstraction of C Programs

apure slicing tool that will mainly be used for scaling up
data flow analysis. Scaling up will be done with respect to
memory aswell astime. Hence, very large programs can be
analysed in lesstime.

We have taken a rather naive approach to dicing. As
mentioned above, abstraction isexpensiveand henceinitially
the abstraction iscoarse. It can berefined asper the need.

We are following a user-driven approach in which we
give a set of predicates to our program from a file. These
predicates form our points of interest in the program. With
respect to these predicatesthe predicate abstraction prototype
tool will giveall the parts of the program that affect thevalue
of these predicates / program variables. In other words, it
gives us the parts of the program relevant to the set of
predicates input to the program. Theinput set of predicates
isgiven tothe program in theform:

Scope Name Function Name
G vari
L var2 FuncName

G :- Global Variable L :- Local Variable

Figure 3: Input File Format

Here‘'G’ standsfor aglobal variableand ‘L’ stands for
alocal variable. The scope of thevariableis given followed
by the name of the variable which isfollowed by the function
towhich it belongs.

In the example above we can see that the scopeis‘ G’
or global and the name of thevariableis‘varl'. Being global
it does not belong to any function. The second variable has
alocal scope, name as ‘var2’ and belongs to ‘ FuncName'
function.

In our tool we are interested in the ‘Divide by Zero’
property. For testing purposes a driver has been made that
generatesthe predicatesfrom a C application. In thiscaseit
will consider all the divisorsin the program and collect all
the variablesin the divisors as the points of interest. It will
generate afilein theform given in figure 3.

Oncethisinput has been given to our tool, it returnsall
the relevant aspectsof the program in theform of functions
relevant over the set of input predicates. The approach to
find such relevant functionsis asfollows:

Initially therearethree sets computed for each function
which are asfollows:

1. Globalsusd

2. Globals modified

3. Formal parameters modified

Thefirst set givesall theglobal variablesthat have been
used by aparticular function and all itschildren (thefunctions
that are called in its body) since they may be using global
variables.

The second set gives all the global variables that
have been modified by a particular function and all its
children.

63

Thethird set givesusall theformal parametersthat are
modified by a particular function and itschildren. It means
that after afunction has been executed the memory locations
that it has modified are contained in this set in the form of
formal parameter numbers since it may be called from any
function. Once these sets have been computed we proceed
towardsthe main approach.

Consider thefunctionsin aprogram oneat atime.

First of al check if our point of interest variableisbeing
directly modified in this function. If yes, then mark this
function asrelevant and mark all its ancestors as relevant.
The ideology behind this is that the value of our point of
interest can be modified only if the parent of our functionis
called. So, only if the parent iscalled will the current function
be called.

The next case to be considered is during the time of
function calls inside a function definition. It is because a
call toafunction could change a memory location which in
turn could affect the values of our points of interest. A call
could change amemory location by retuning a value or by
modifying a location pointed to by the pointer sent as a
formal parameter or by changing global variables. Hence,
when thereis afunction call we consider three cases.

1. It call could beacall that returns avalue and the
value is being used (the value returned is being
assigned to something)

It could take areference asits parameter
3. It could just be aplain call that does not return a
valueor it returnsavaluebut thevalueis not used
or no referenceisbeing passed to it.

Case 1: Consider thefirst case. If thecall returnsavalue
and the valueis being used (the valuereturned is modifying
some memory location), then we may assumethat the value
being returned may later affect the values of our points of
interest. Hence we mark the called function and al its
ancestors (all its callers, and their callers and so on) as
relevant since thisfunction can becalled only if itscaller is
called. We al so need to make an executable program. Hence
the aboverule,

Case 2: In the second case since a reference is being
passed as a parameter to the function we can find whether
this function is modifying some memory location by
checking thethird set that we had initially computed. If yes,
then we may assume that the modification may later affect
the values of our pointsof interest. Hencewemark the called
function asrelevant and all its ancestors as relevant. If no,
then we need to check for the global variables that the
function modifiesin the second set that has been computed.
If wefind that the called function is modifying some global
val ue which may be used by the caller function or any of its
ancestorswe mark the called function asrelevant and all its
ancestorsasre evant.

Case 3: In thethird case, we bring into picture global
variables. If we find that the called function is modifying
some global valuewhich may be used by the caller function

N

64

or any of itsancestorswe mark the called function asrd evant
and all its ancestors as relevant. It is done so because we
assumethat thechangein the global variablesmay later affect
the points of our interest.

In thisway we get all therelevant partsof the program,
removing all theirrelevant parts of the original program.

Let usillustrate with an example

In the following example variable ‘i’, alocal variable
that belongs to function ‘main’ is our point of interest.
According to our approach we havefound that therelevant
functions are ‘abc’, ‘xyz’ and ‘main’. Function ‘abc’ is
relevant because it is returning a value inside the function
‘main’ that isbeing consumed. Hence*abc’ isrelevant. Also
‘main’ isrelevant becausethevalueof of ‘i’ isbeing directly
modified inside this function. Function ‘xyz' is relevant
because a pointer is being passed which according to our
second case should be marked as relevant. Since function
‘pgr’ doesnat fall into any of the above casesit isirrelevant
with respect tovariable'i’.

In this manner we can find out all the functions that
may directly or indirectly affect the value of our point of
interest.

int g=10;

int abe() {
int k=10;
return k:

}
void xyz(int *ptr} {
*prr=g:

}
void pqr{int a) {
int b,c:
b=a:
c=a;
}
void main() {
int i.j,*ptr:
i=abc():
ptr=&i;
xyz(ptr):
=9:
par(i):
}

Scope Name FunctionName
L i main
Relevant Functions : abc¢, xyz, main.

6. CHALLENGESIN PREDICATE ABSTRACTION

In Predicate Abstraction of C programs various aspects of
C Language areto be considered, so various challengeswere
encountered in designing the Predicate Abstraction Toal.
Some of the challenges faced are as follows:
» Pointers: Pointers are datatypes which hold
addresses of variablesto which it is*pointing to’.
In C programs pointersdirectly affect the value of
variabletowhich it isreferencing. Thusin Predicate

Abstraction it is necessary to keep track of all the
pointerswhich directly or indirectly may affect our
point of interest variable. Since we process
functions not according to the flow of the program
it is even more difficult to handle pointers.
When a pointer is passed as parameter toacall, it
is important to note whether the pointer is
modifying a memory location after retuning from
thecall.

* Proceduresor Functions: In Predicate Abstraction
the Procedures or Functions which are modifying
the value of point of interest variable are relevant
tous, whileothersareirrelevant and are dliced out
in theabstract version of a program. There can be
various types of functions:

1. Call by reference.
2. Call by value.
3. Call without parametersetc.

Thus all the functions in a program are analyzed and
corresponding operations are carried out to find all the
functionswhich arerelevant to our point of interest variable.

Recursive Calls: All therecursivefunctionsin aprogram
are considered to find if it is relevant or irrelevant. The
procedureto find relevant functionsis asfollows:

a Process

b. Mak

By means of a flag we can mark the function as
processed in the beginning itself. In thisway we can handle
recursive functions.

» Complex DataTypes: Structures, unionsand arrays

are handled differently. For instance, even if a
member of a structure variable is being modified
we need to consider the structure variable as
modified. Doing this requires an APl called
coveredby() which tellswhether the variable under
consideration ispart of the structure variable.

eg.
Struct node
{
Intx;
Chary;
}
Struct node s;
s.x=30;

Consider the structure variable's to be our point of
interest. We can see that's is modified in the statement
s.x=30. Using covered by APl we can find whether sx isa
part of s. Hencein this manner we can handle complex data
structuresas well.

7. UNIQUENESS

The dlicing tool differs from the ones given above. Its
features are given below in brief.

Predicate Abstraction of C Programs

Table 1
Characteristics of the Tool

QOur Tool

Function

Set of functions

Program analysis

Backward

Static

Not at a particular statement

Characteristics
Abstraction level
Type of result
Intended application
Slicing Direction
Type of information
The statement

Thus the effective output from the dlicing tool is a set
of functions relevant to the dicing criterion, the criterion
being a set of program variables.

8. APPLICATIONS

The predicate abstraction tool can be used for various
applications. Some of them are given bel ow.

» Deadlock detection: In this case we can consider
semaphores asthe points of interest variables With
respect to these semaphoreswe get only therel evant
parts of the code.

» Division by zero: In order to locate statements in
the program that could lead to a division by zero
case, all the denominators are considered as the
points of interest variabl es.

* Null Pointer Exception: Consider all the variables
that could lead to anull pointer exception aspoints
of interest. All the functions relevant to such
variablesarefound.

General Applications

This section describes four of the applications to which
program slicing has been put. The section starts with a
discussion of debugging, which wasthe original motivation
for program slicing. Since then dlicing has been applied to
many other problem areas. To give aflavor for the breadth
of applications two additional topics are described:
comprehension and maintenance. The first of these is
covered in detail, while the latter two are presented in
overview.

1. Debugging

It facilitates debugging and can be used to narrow the search
for thefault, by including only those statements which coul d
have caused a fault to have occurred on the particular
execution of interest.

2. Comprehension

Program comprehens on becomesbetter by obtaining slices
to understand every individual casein the program leaving
therest aside.

3. Maintenance

By obtaining adicewith respect to someproperty of interest
we can find the parts of code that will be affected dueto a

65

changein thepredicate. Hence maintenanceeffort isreduced
aswell.

CONCLUSION

The tool has successfully been tested on a number of C
programs including one with around 6000 lines of code
containing 163 functionsin it. In order to check for thedivide
by zero cause, the predicates input to the tool were the
divisorsin the program. A Driver was written to generate
such predicates. It generated the predicatesin lessthan half
aminute. After dicing, 86 relevant functions were obtained.
Thisprocessing took just 45 seconds. Thus, in order to check
for divide by zero, only 86 functions need to be analyzed
instead of the original 163 functions. This saves analysis
time and memory immensely.

The predicate abstraction tool thus built contributes
greatly in scaling up of Data Flow Analysis in terms of
memory and time. Thus, instead of analyzing a code that
spans thousands of lines, only therelevant parts need to be
analyzed just by giving the point of interest tothetool. The
Relevant parts of the program are expressed in terms of
relevant functions. These arethose functionswhich directly
or indirectly affect the value of the variable of interest also
known asthe predicate. In finding these relevant functions,
care has been taken to ensurethat only those functions which
definitely have no bearing on the value of predicate are
marked as irrelevant. All cases for relevance have been
checked meticulously.

Thetool iscurrently being tested on a C project which
has around 1 lakh lines of code containing 877 functions.
After analysis, 27 predicates have been generated.

REFERENCES

[1] Herbert Schildt, JAVA: Complete Reference.

[2] wwwwikipedia.org

[3] www.google.com

[4] verify.stanford.edu/satyaki/research/
Researchinterests.html

[5] verify.stanford.edu/satyaki/research/
PredicateAbstraction.html

[6] http://hissa.nist.gov/unravel/

[7] linz.ac.at/Research/Projects/ProgramSlicing/ECOOPO9Y/
Demonstration/Demo/ppframe.htm

[8] Satyaki Das, “Predicate Abstraction”, Stanford University.

[9] Tommy Hoffner, “Evaluation and Comparison of

Program Slicing Tools".

Andrea De Lucia, “Program Slicing: Methods and

Applications’, Faculty of Engineering, University of

Sannio.

Thomas Henzinger, U C Berkely, “An Overview of

Program Slicing Software Verification with Blast”.

David Binkley, “Program Slicing”,The Wisconsin
Program-Slicing Tool.

[10]

[11]

[12]

