
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007
CSES International © 2007 ISSN 0973-4406

Manuscript received July 25, 2007
Manuscript revised September 15, 2007

Efficient Graph Structure for the Mining of
Frequent Itemsets from Data Streams

E.R.NAGANTHAN and F. Ramesh DHANASEELAN
Department of Computer Science & Engg., Alagappa University, Karaikudi,Tamil Nadu, India

E-mail:ern_jo, message_to_ramesh@yahoo.com

Abstract: In this paper, we propose a graph structure which captures important data streams. This graph can be easily
maintained and mined for frequent item sets as well as various other patterns like constrained item sets. This graph captures
the contents of transaction in a window and arranges nodes according to some canonical order that is unaffected by changes
in item frequency. This graph structure is designed for exact stream mining of regular frequent item sets.

Keywords: Stream Mining, Association Rule Mining, Frequent itemsets, Data Stream.

1. INTRODUCTION

A data stream is an ordered sequence of items that arrives in
timely order. Different from data in traditional static
databases, data streams are continuous, unbounded, usually
come with high speed and have a data distribution that often
changes with time [1]. One example application of data
stream association rule mining is to estimate missing data in
sensor networks [2]. Mining from data the following two
properties of streams is more challenging due to data streams,
ie., the data streams are continuous and unbounded and data
in the streams are not necessarily uniformly distributed; their
distributions are usually changing with time. In recent years,
several stream mining algorithms have been proposed, and
they can be broadly categorized into two classes, ie., exact
and appropriate algorithms. Exact algorithms [3] find truly
frequent item sets and appropriate algorithms [4] find
frequent item sets by using appropriate procedures, ie., these
algorithms may find some infrequent item sets or may miss
some frequent item sets. We propose a graph structure, which
is designed for exact stream mining of regular frequent item
sets. The graph captures the contents of relevant transactions
in the streams. When the streams flow through, a fixed size
user window containing the interesting portion of the streams,
ie., the recent data is properly updated.

Traditional association rule mining algorithms are
developed to work on static data and, thus, can not be applied
directly to mine association rule in stream data [8, 9, and
15]. The first recognized frequent item sets mining algorithm
for traditional databases is Apriori [5]. After that, many other
algorithms based on the ideas of Apriori were developed
for performance improvement [6]. Apriori-based algorithms
require multiple scans of the original database, which leads

to high CPU and I/O costs. Therefore, they are not suitable
for a data stream environment, in which data can be scanned
only once. Another category of association rule mining
algorithms for traditional databases proposed by Han and
Pei [7] are those using a frequent pattern tree (FP-tree) data
structure and an FP-growth algorithm which allows mining
of frequent item sets without generating candidate item sets.
Compared with Apriori-based algorithms, it achieves higher
performance by avoiding iterative candidate generations.
However, it still can not be used to mine association rule in
data streams [10, 13] since the construction of FP-tree
requires two scans of data. The rest of the paper is organized
as follows. Section 2 introduces our graph structure for
stream mining. Section 3 shows experimental results. Finally,
conclusions are presented in section 4.

2. GRAPH STRUCTURE FOR DATA STREAM

The graph structure is designed for exact stream mining
[11, 14]. The construction of the graph structure only requires
on scan of the streaming data. The graph structure captures
the contents of transactions in each batch of streaming data.

We arrange transaction items according to some
canonical order, which can be specified by the user prior to
the graph construction or the mining process. For example,
items can be consistently arranged in lexicographic order or
alphabetical order. Alternatively, items can be arranged
according to some specific order depending on the item
properties-such as their price values or their validity to some
constraints, which can also be determined prior to the graph
construction or the mining process. We keep a list of
frequency counts at each node.

Whenever a new batch of transactions flows in, we
append to this list at each node its frequency count in the
current batch. In other words, the last entry of the list at
node X shows the frequency count of X in the current batch.

Journal of Information Technology and Engineering
Vol. 2 No. 2 (December, 2017)

 Received: 15th April 2017 Revised: 10th May 2017 Accepted: 17th November 2017

280 IJCSES International Journal of Computer Sciences and Engineering Systems, Vol. 1, No. 4, October 2007

When the next batch of transactions comes in, the list is
shifted forward. The last entry shifts and becomes the second
–last entry; this leaves room for the newest batch. At the
same time, the frequency count corresponding to the oldest
batch in the window [12] is removed. This has the same effect
as deleting from the window the transactions in the oldest
batch.

We use a pointer to indicate the last update at each node.
If the pointer points to the previous entry in the list of
frequency counts at a node X, then this indicates that X has
just been visited at the update of the last batch. On the other
hand, if the pointer points to a much earlier entry in the list
at a node Y, then this indicates that Y has not been visited
since then and that the frequent counts of Y for the entries
in–between should be 0s.

Since the graph structure is constructed independent of
minsup, every transaction in the current window is captured.
Once such a tree is constructed, we can mine frequent
itemsets from it in a fashion similar to FP–growth [16] (using
minsup). Since items are consistently arranged according to
some canonical order, one can guarantee the inclusion of all
frequent items using just upward traversals. There is also
no worry about possible omission or doubly–counting of
items during the mining process. Consequently, we find all
and only those truly frequent itemsets because we use minsup
for mining and because every transaction in the current
window is captured in the graph structure.

To summarize, transaction items are arranged according
to some canonical order in our graph structure so that the
ordering is unaffected by the changes in frequency caused
by the continuous nature of streams. When the window slides,
transactions in the oldest batch can be easily “detected” by
shifting the list of frequency counts. The effective use of
pointer at each node helps us avoid performing the expensive
tree traversal of all nodes. Moreover, mining is “delayed”
until it is needed. Since our graph structure is always kept
up-to-date, frequent itemsets in current streams can be found
effectively. By using such a “delay evaluation” scheme, we
avoid lots of unnecessary computation. As streams are
continuously flowing rapidly, computation spent on older
batches of transactions may have been wasted if these batches
get removed from the current window before the user mines
for frequent itemsets. Consider the following stream of
transactions:

Batch Transactions Contents

First t
1
 t

2
 t

3
{a,b,c}{a} {a,c}

Second t
4
 t

5
 t

6
{a,c,d}{b,d}{a,b,d}

Third t
7
 t

8
 t

9
{b,d}{a,b,c,d}{a,c}

Let minsup be 3 and let the window size w be 2 batches
(indicating that only two batches of transactions are kept)
Then, when the first two batches of transactions in the
streams flows in, we insert the transactions into our graph

structure and keep frequency counts in a list of w entries at
each node. Each entry in the list corresponds to a batch. For
example, the node a: 3: 2 in figure 1 indicates that the
frequency of a is 3 in the first batch and is 2 in the second
batch.

Figure 1: At time T (the Graph Structure Capturing 1st and 2nd
Batches)

Figure 2: At time T� (the graph structure capturing 2nd and 3rd
batches)

Afterwards (at time T�), when the third batch of
streaming data flows in, we insert the transactions in our
graph structure. The list of frequency counts shifts, the
frequent counts for the oldest (i.e., the first) batch are
removed–leaving room for the frequency counts for the
second and the third (i.e., the two newest) batches of
transactions. For example, if we call the mining process at
time T�, we get frequent itemsets {a}:4, {a, c}:3, {a, d}: 3,
{b, d}:4, {c}: 3 and {d}: 5.

3. EXPERIMENTAL RESULTS

In the experiments, we mainly evaluated the accuracy and
efficiency of our graph structure. In the first experiment, we

Efficient Graph Structure for the Mining of Frequent Itemsets from Data Streams 281

measured the accuracy of graph structure. As the graph
structure captured the most recent batches of transactions in
the streams, we compared the frequent item sets returned by
mining directly form these transactions with those returned
by mining from our graph structure. The experimental results
show that mining from our graph structure led to 100%
accuracy. In other words, mining from the graph structure
returned all and only those truly frequent item sets. All the
returned item sets were frequent, and all frequent item sets
were returned. This shows that our graph structure, which is
designed for an exact stream mining. The graph structure
captures the contents of transactions in the streams.

In the second experiment, we measured the efficiency
of our graph structure. We compared the runtime of mining
from our graph structure with that of using the DSTree. The
x-axis shows the number of batches in the current window.
The y-axis shows the run time. Figure 3 shows the run time.
When the number of batches increased, the run time of
mining from our graph structure slightly increased. But it is
better than DSTree.

Figure 3: Number of Batches

Number of Batches

0

50

100

1 2 3 4 5 6 7 8 9

Number of batches in the sliding window

R
u

n
 t

im
e

(i
n

se
co

n
d

s)

Mining with DSTree Mining with Graph structure

The result of third experiment show that, our graph
structure required less space than the DSTree.

4. CONCLUSIONS

This graph structure captures the contents of transactions in
a window, and arranges tree nodes according to some
canonical order that is unaffected by changes in item
frequency. Mining from this graph structure returned all and
only those truly frequent item sets. All the returned item sets
were frequent, and all frequent item sets were returned. So
this graph structure is suitable for exact stream mining of
regular frequent item sets.

REFERENCES

[1] Studipto Guha, Nick Koudas, Kyuseok Shine; Data
stream and Histogram; ACM Symposium on Theory of
Computing; 2001.

[2] Mihail Kalatcher and Le Gruenwald; Estimating Missing
values in Related Sensor Data streams; Int’l Conf. on
Management of Data; January 2005.

[3] Y. Chi et al. Moment: Maintaining Closed Frequent Item
Sets Over a Stream Sliding Window. In proc. ICDM
2004, pp. 59-66.

[4] C. Giannella et al. Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. In Data Mining:
Next Generation Challenges and Future Directions,
AAAI/MIT Press, 2004, ch. 6.

[5] Rakesh Agarwal, Tomasz Imielinski, Arun Swami;
Mining Association Rule between Sets of Items on
Massive Databases; Int’l Conf. on Management of Data;
May 1993.

[6] Jaiwei Hans, Guozhu Dong, Yiwen Yin; Efficient Mining
of Partial Periodic Patterns in Time Series Database;
IEEE Int’l Conference on Data Mining; March 1999.

[7] Jaiwei Hans, Jian Pei, Yiwen Yin; Mining Frequent
Patterns without Candidate Generation: Int’l Conf. on
Management of Data; May 2000.

[8] Mohamed Medhat Gaber, Arkady Zaslavsky and Shonali
Krishnaswamy; Mining Data Streams: A Review;
SIGMOD Record, Vol. 34, No. 2, June 2005.

[9] Nan Jiang and Le Gruenwald; Research Issues in Data
Stream Association Rule Mining; SIGMOID Record, Vol.
35, No. 1, March 2006.

[10] Carson Kai-Sang Leung and Quamrul I.Khan; DSTree: A
Tree Structure for the Mining of Frequent Sets from Data
Streams; IEEE Sixth Int’l. Conf. on Data Mining, 2006.

[11] J.X. Yu et al.; False Positive or False Negative: Mining
Frequent Item Sets from High Speed Transactional Data
Streams; In Proc. VLDB, 2004, pp. 204-215.

[12] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, Arbee
L.P. Chen; Mining Frequent Item Sets from Data Streams
with a Time-Sensitive Sliding Window; SIAM Int’l Conf.
on Data Mining, April 2005.

[13] Moses Charikar, Kevin Chen, Martin Farach-Colton;
Finding Frequent Items in Data Streams; Theoretical
Computer Science; January 2004.

[14] L.Golab and M.T Ozsu; Issues in Data Stream
Management; In SIGMOID Record, Vol. 32, No. 2, June
2003.

[15] Joong Hyuk Chang, Won Suk Lee; A Sliding Window
Method for Finding Recently Frequent Itemsets over
Online Data Streams; Journal of Information Science and
Engineering, July 2004.

[16] J. Han et al.; Mining Frequent Patterns Without Candidate
Generation; In Proc. SIGMOID 2000, pp. 1-12.

