Journal of Information Technology and Engineering
Vol. 2 No. 2 (December, 2017)

Efficient Graph Structure for the Mining of
Frequent Itemsets from Data Streams

E.R.NAGANTHAN and F. Ramesh DHANASEELAN

Department of Computer Science & Engg., Alagappa University, Karaikudi,Tamil Nadu, India
E-mail:ern_jo, message to_ramesh@yahoo.com

Received: 15th April 2017 Revised: 10th May 2017 Accepted: 17th November 2017

Abstract: In this paper, we propose a graph structure which captures important data streams. This graph can be easily
maintained and mined for frequent item setsas well asvarious other patternslike constrained item sets. Thisgraph captures
the contents of transaction in a window and arranges nodes according to some canonical order that is unaffected by changes
in item frequency. This graph structure is designed for exact stream mining of regular frequent item sets.

Keywords: Sream Mining, Association Rule Mining, Frequent itemsets, Data Sream.

1. INTRODUCTION

A datastreamisan ordered sequenceof itemsthat arrivesin
timely order. Different from data in traditional static
databases, data streams are continuous, unbounded, usually
come with high speed and have adata distribution that often
changes with time [1]. One example application of data
stream associ ation rulemining isto estimatemissing datain
sensor networks [2]. Mining from data the following two
properties of greamsis more challenging dueto data streams,
ie., thedatastreams are continuous and unbounded and data
in thestreams are not necessarily uniformly distributed; their
distributions areusually changing with time. In recent years,
several stream mining algorithmshave been proposed, and
they can be broadly categorized into two classes, ie., exact
and appropriate algorithms. Exact algorithms[3] find truly
frequent item sets and appropriate algorithms [4] find
frequent item sets by using appropriate procedures, ie., these
algorithms may find some infrequent item setsor may miss
somefrequent item sets. We propose agraph structure, which
isdesigned for exact stream mining of regular frequent item
sats. Thegraph capturesthe contents of rd evant transactions
in the streams. When the streams flow through, afixed size
user window containing theinteresting portion of the streams,
ie., therecent datais properly updated.

Traditional association rule mining algorithms are
devel oped to work on static data and, thus, can not be applied
directly to mine association rule in stream data [8, 9, and
15]. Thefirg recognized frequent item sets mining algorithm
for traditional databasesisApriori [5]. After that, many other
algorithms based on the ideas of Apriori were developed
for performanceimprovement [6]. Apriori-based algorithms
require multiple scans of the original database, which leads

to high CPU and 1/0 costs. Therefore, they are not suitable
for adatastream environment, in which data can be scanned
only once. Another category of association rule mining
algorithms for traditional databases proposed by Han and
Pel [7] arethose using afrequent pattern tree (FP-tree) data
structure and an FP-growth algorithm which allows mining
of frequent item setswithout generating candidateitem sets.
Compared with Apriori-based a gorithms, it achieves higher
performance by avoiding iterative candidate generations.
However, it still can not be used to mine association rulein
data streams [10, 13] since the construction of FP-tree
requirestwo scans of data. Therest of the paper isorganized
as follows. Section 2 introduces our graph structure for
stream mining. Section 3 shows experimental results. Finally,
conclusions are presented in section 4.

2. GRAPH STRUCTURE FOR DATA STREAM

The graph structure is designed for exact stream mining
[11, 14]. Theconstruction of the graph structure only requires
on scan of the streaming data. Thegraph structure captures
the contents of transactionsin each batch of streaming data.

We arrange transaction items according to some
canonical order, which can be specified by the user prior to
the graph construction or the mining process. For example,
itemscan be consistently arranged in lexicographic order or
alphabetical order. Alternatively, items can be arranged
according to some specific order depending on the item
properties-such asther pricevalues or their validity to some
congtraints, which can al so be determined prior to thegraph
construction or the mining process. We keep a list of
frequency counts at each node.

Whenever a new batch of transactions flows in, we
append to thislist at each node its frequency count in the
current batch. In other words, the last entry of the list at
node X showsthe frequency count of X in the current batch.

280

When the next batch of transactions comes in, the list is
shifted forward. Thelast entry shifts and becomesthe second
—last entry; this leaves room for the newest batch. At the
sametime, thefrequency count corresponding to the ol dest
batch in thewindow [12] isremoved. Thishasthe same effect
as deleting from the window the transactionsin the ol dest
batch.

Weuse apointer toindicatethelast update at each node.
If the pointer points to the previous entry in the list of
frequency counts at anode X, then thisindicatesthat X has
just been visited at the update of the last batch. On the other
hand, if the poi nter pointstoamuch earlier entry in thelist
at anodeY, then thisindicates that Y has not been visited
since then and that the frequent counts of Y for the entries
in—between should be Os.

Sincethegraph structureis constructed independent of
minsup, every transaction in the current window is captured.
Once such a tree is constructed, we can mine frequent
itemsetsfromitin afashion smilar to FP—growth [16] (using
minsup). Sinceitems areconsi stently arranged according to
some canonical order, one can guaranteetheinclusion of all
frequent items using just upward traversals. There is also
no worry about possible omission or doubly—counting of
items during the mining process. Consequently, wefind all
and only thosetruly frequent itemsets becausewe use minsup
for mining and because every transaction in the current
window is captured in the graph structure.

To summarize, transaction itemsarearranged according
to some canonical order in our graph structure so that the
ordering is unaffected by the changes in frequency caused
by the continuous nature of sreams. When thewindow dides,
transactionsin the oldest batch can be easily “detected” by
shifting the list of frequency counts. The effective use of
pointer at each node hel ps usavoid performing the expensive
tree traversal of all nodes. Moreover, mining is “delayed”
until it isneeded. Since our graph structureis always kept
up-to-date, frequent itemsetsin current streamscan befound
effectively. By using such a*“delay evaluation” scheme, we
avoid lots of unnecessary computation. As streams are
continuoudly flowing rapidly, computation spent on older
batches of transactions may have been wasted if these batches
get removed from the current window beforethe user mines
for frequent itemsets. Consider the following stream of
transactions:

Batch Transactions Contents
First Lt {ab,c}{a} {ac}
Second tttg {a,c,d}{b,d}{a,b,d}
Third tt,t, {b,d}{a,b,c,d}{ac}

Let minsup be 3 and | et thewindow sizewbe 2 batches
(indicating that only two batches of transactions are kept)
Then, when the first two batches of transactions in the
streams flows in, we insert the transactions into our graph

structure and keep frequency countsin alist of wentries at
each node. Each entry in thelist correspondsto a batch. For
example, the node a: 3: 2 in figure 1 indicates that the
frequency of ais 3 in thefirst batch and is 2 in the second
batch.

i} 1

Figure 1: At time T (the Graph Structure Capturing 1st and 2nd

Batches)
b
a |2 | 2
1 1
SN PR e « I
U |
1
2
N.
0
1 L1
1 |0
|

Figure 2: At time T’ (the graph structure capturing 2nd and 3rd
batches)

Afterwards (at time T'), when the third batch of
streaming data flows in, we insert the transactions in our
graph structure. The list of frequency counts shifts, the
frequent counts for the oldest (i.e, the first) batch are
removed— eaving room for the frequency counts for the
second and the third (i.e., the two newest) batches of
transactions. For example, if we call the mining process at
timeT’, weget frequent itemsets{a}:4, {a, c}:3, {a, d}: 3,
{b, d}:4, {c}: 3and {d}: 5.

3. EXPERIMENTAL RESULTS

In the experiments, we mainly evaluated the accuracy and
efficiency of our graph structure. In thefirst experiment, we

Efficient Graph Structure for the Mining of Frequent Itemsets from Data Streams

measured the accuracy of graph structure. As the graph
structure captured the most recent batchesof transactionsin
the streams, we compared the frequent item setsreturned by
mining directly form thesetransactionswith those returned
by mining from our graph structure. The experimentd results
show that mining from our graph structure led to 100%
accuracy. In other words, mining from the graph structure
returned all and only thosetruly frequent item sets. All the
returned item sets were frequent, and all frequent item sets
werereturned. Thisshowsthat our graph structure, whichis
designed for an exact stream mining. The graph structure
capturesthe contents of transactionsin the streams.

In the second experiment, we measured the efficiency
of our graph structure. We compared theruntime of mining
from our graph structure with that of usingthe DSTree. The
x-axis shows the number of batchesin the current window.
They-axis showstherun time. Figure 3 showsthe run time.
When the number of batches increased, the run time of
mining from our graph structure dightly increased. But it is
better than DSTree.

Number of Batches

8

Run time (in
seconds)
2]

1 2 3 4 5 6 7 8 9

Number of batches in the sliding window

Mining with DSTree Mining with Graph structure

Figure 3: Number of Batches

The result of third experiment show that, our graph
structure required less space than the DSTree.

4. CONCLUSIONS

This graph structure capturesthe contentsof transactionsin
a window, and arranges tree nodes according to some
canonical order that is unaffected by changes in item
frequency. Mining from thisgraph structurereturned all and
only thosetruly frequent item sets. All thereturned item sets
were frequent, and all frequent item setswere returned. So
this graph structure is suitable for exact stream mining of
regular frequent item sets.

REFERENCES

[1] Studipto Guha, Nick Koudas, Kyuseok Shine; Data
stream and Histogram; ACM Symposium on Theory of
Computing; 2001.

(2]

(3]

(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

281

Mihail Kalatcher and Le Gruenwal d; Estimating Missing
values in Related Sensor Data streams; Int'l Conf. on
Management of Data; January 2005.

Y. Chi etal. Moment: Maintaining Closed Frequent Item
Sets Over a Stream Sliding Window. In proc. ICDM
2004, pp. 59-66.

C. Gianndla et al. Mining Frequent Patterns in Data
Streams at M ultiple Time Granularities. In DataMining:
Next Generation Challenges and Future Directions,
AAAI/MIT Press, 2004, ch. 6.

Rakesh Agarwal, Tomasz Imielinski, Arun Swami;
Mining Association Rule between Sets of Items on
Massive Databases; Int’| Conf. on Management of Data;
May 1993.

Jaiwe Hans, Guozhu Dong, Yiwen Yin; Efficient Mining
of Partial Periodic Patterns in Time Series Database;
IEEE Int'| Conference on Data Mining; March 1999.
Jaiwei Hans, Jian Pei, Yiwen Yin; Mining Frequent
Patterns without Candidate Generation: Int'l Conf. on
Management of Data; May 2000.

M ohamed M edhat Gaber, Arkady Zaslavsky and Shonali
Krishnaswamy; Mining Data Streams: A Review;
SIGMOD Record, Val. 34, No. 2, June 2005.

Nan Jiang and Le Gruenwald; Research Issues in Data
Stream Association Rule Mining; SGMOID Record, Val.
35, No. 1, March 2006.

Carson Kai-Sang Leung and Quamrul |.Khan; DSTree: A
Tree Structure for the Mining of Frequent Sets from Data
Streams; |EEE Sxth Int’l. Conf. on Data Mining, 2006.

J.X. Yu et al.; False Positive or False Negative: Mining
Frequent Item Sets from High Speed Transactional Data
Streams; In Proc. VLDB, 2004, pp. 204-215.
Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung Wu, Arbee
L.P. Chen; Mining Frequent Item Sets from Data Sreams
with aTime-Sensitive Sliding Window; SSAM Int’| Conf.
on Data Mining, April 2005.

Moses Charikar, Kevin Chen, Martin Farach-Colton;
Finding Frequent Items in Data Streams; Theoretical
Computer Science; January 2004.

L.Golab and M.T Ozsu; Issues in Data Stream
Management; In SSGMOID Record, Vol. 32, No. 2, June
2003.

Joong Hyuk Chang, Won Suk Lee; A Sliding Window
Method for Finding Recently Frequent Itemsets over
Online Data Streams; Journal of Information Scienceand
Engineering, July 2004.

J. Han et al.; Mining Frequent Patterns Without Candidate
Generation; In Proc. SGMOID 2000, pp. 1-12.

