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THE GENERALIZED CESÀRO OPERATOR ON
THE UNIT BALL IN Cn

Stevo Stevi

ABSTRACT: We define the generalized Cesàro operator C
0

�
�  on the space of holomorphic

functions on the unit ball B � Cn as follows
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The boundedness of the operator on some spaces of holomorphic functions on the unit ball
is considered.
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1. INTRODUCTION

Let U be the unit disc in the complex plane C, dm(z) = 
d

rdr
�
�

 the normalized

Lebesgue area measure on U and H(U) the space of all analytic functions in U.

For each complex � with �� > –1 and k nonnegative integer let kA�  be defined as

the kth coefficient in the expression
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For an analytic function n
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� �  on U, the generalized Cesàro operator

is defined by
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These operators were introduced in [12] on Hardy spaces and have been
subsequently studied and proved bounded on all Hardy spaces in [17]. The
boundedness of the operator on other spaces of analytic functions were considered
in [15], [16] and [17]. For � = 0 we obtain the classical Cesàro operator C0 = C,
which was investigated, for example, in [1, 2, 7, 8, 9, 10, 11]. Adjoint of Cesàro
operator was investigated in [8, 9, 17].

The integral form of C� is (see [12])
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or, taking simply as a path the segment joining 0 and z,
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Closely related operators on the polydisc were investigated in [13, 14].

Let z = (z
1
, . . ., z

n
) and w = (w

1
, . . .,w

n
) be points in complex vector space Cn. For

a holomorphic function f we denote

n
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f
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The aim of this note is to define a generalized Cesàro operator on the unit ball
B � Cn and to prove its boundedness on some spaces of analytic functions on B. The
class of all analytic functions on B will be denoted by H(B).

We define the generalized Cesàro operator on H(B) as follows
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where � is a complex number such that �g > –1, �� is a fixed point which lies on the
boundary �B of the unit ball B and

�z,w��= z
1
w

1
 +�� ��� + z

n
w

n
.
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The Hardy space Hp(B) (0 < p < �) is defined on B by

pH B f f H B( ) { | ( )� �  and  pH B
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where d� is the normalized surface measure on �B.

The weighted Bergman space ( ), 1, 0,p B p� � � � ��  is the space of all analytic

functions f on B for which
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(f, r) = � �1/

| ( ) | ( )
p
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B
f r d

�
� � ��  and dV is the normalized Lebesgue’s

measure on the unit ball B.

Let a > 0. The a-Bloch space �a = �a(B) is the space of all analytic functions f on
B such that
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It is clear that �a is a normed space, modulo constant functions and �az � �az for
a

1
 < a

2
.

In this note we prove the following results.

Theorem 1. The operator 
0

�
�� is bounded on Hp(B) if p ��(0,1].

Theorem 2. The operator 
0

�
��  is bounded on p B( )��  if � > -1 and p � (0,1].

Theorem 3. The operator 
0

�
��  is bounded on Ba(B) if a � (1,�).
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2. AUXILIARY RESULTS

In order to prove our main results, we need some auxiliary results which are
incorporated in the following lemmas.

Lemma 1. ([3])If p � (0,�) and f � Hp(B), then there is a constant C depending
only on p and n such that
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Lemma 2. ([6, 1.4.10]) Let
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Then for c > 0 the following relationship holds

I
c
(z)�(1–|z|)–c.

The above means that there are finite positive constants C and C� such that

C(1 – |z|)–c � I
c
(z) � C�(1 – |z|)–c.

Lemma 3. ([4, p.29]) Let 0 < p < q � �, p � �, f � Hp(B) and 1 = n
p q
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Then there is a constant C independent of f such that
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for all f � H(B).

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let p � (0, 1]. Without loss of generality we may assume that �
is a real number greater then –1. Let f � Hp(B), 0 � r < 1, t

k
 = 1 – 2–k, k = 0, 1, � ����and
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as desired.

Remark 1. From the proof of Theorem 1 we see that we have proved a stronger

result, that is, that pM C r
0

( , )�
�  is dominated by a constant multiple of M

p
(f, r).

Proof of Theorem 2. Multiplying inequality (3) by (1– r2)�r2n–1 and then integrating
obtained inequality in r from 0 to 1 we obtain the result.

Given 0 < p, q < �, and positive Borel measure � , on r � (0, 1), the weighted

space p q B, ( )��  consists of those functions f analytic on B for which
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Similar to Theorem 2 we can prove the following result:

Corollary 1. The generalized Cesàro operator is bounded on p q B, ( )��  for p,q >

0. Moreover, there is a constant C independent of f, such that
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Before proving Theorem 3 we need another auxiliary result which is incorporated
in the following lemma.

Lemma 4. Let � > –1, a > 0 and r � (0, 1). Then
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Proof. We have
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as desired.

Proof of Theorem 3. Let a > 1. Then it is well known that
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from which the result follows.
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