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PRACTICAL STABILITY OF IMPULSIVE
FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH INFINITE DELAYS*

Guoping Chen & Jianhua Shen

ABSTRACT: This paper studies the practical stability problems for a class of impulsive
functional differential equations with infinite delays. By using Liapunov functions and
Razumikhin techniques or Liapunov functionals, some results on practical stability are
obtained.
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1. INTRODUCTION

It is known that, the mathematical theory of impulsive differential equations has
been developed very intensively, see [1-9] and references therein. One of the trends
in the stability theory of differential equations is the so-called practical stability
which is neither weaker nor stronger than Lyapunov stability (cf. [11]). Fundamental
results in this direction were obtained in [10-11]. In recent years, the theory of practical
stability of impulsive differential equations has been also intensively developed, see
[12,13,14] and references therein. However, there are rare results of the practical
stability for impulsive functional differential equations with infinite delays, compared
with the results of impulsive ordinary differential equations or impulsive functional
differential equations with finite delays (cf. [13,14]). As pointed out in [15,16,17],
even though for functional differential equations without impulses, stability results
established for equations with finite delays are not obviously true in general for
infinite delays. The common and main difficulty is that the interval (– �; t

0
] is not

compact, and the images of a solution map of closed and bounded sets in C((–�, 0],
Rn) space may not be compact. Same situation arises in PC((–�, 0], Rn) space for
impulsive functional differential equations with infinite delays (cf. [19,20]).
Therefore, it is an interesting problem to extend the methods for investigating stability
of functional differential equations with infinite delays to practical stability of
impulsive functional differential equations with infinite delays.
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In this paper, we use Liapunov functions and Razumikin techniques or Liapunov
functionals to study the practical stability of impulsive functional differential
equations with infinite delays, some useful results are obtained.Two examples are
given to illustrate our results.

Let R = (–�, �), R+ = [0, �). For x � Rn, ����� denotes the Euclidean norm of x, the
ball S(H) of Rn is denoted by S(H) = {x � Rn : �x� < H ���}. For t � t* > ��� –�,
F(t, x(s); ��� s � t) or F(t � x(�)) is a Volterra-type functional, its values are in Rn and
are determined by t � t* and the values of x(s) for [�, t]. In the case when � = –�, the
interval [�, t] is understood to be replaced by (–�, t]. We consider the impulsive
Volterra-type functional differential equation with infinite delays
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where Z+ is the set of all positive integers, x�(t) denotes the right-hand derivative of

x(t) at t, where � � � �0lim
kk t tx t x t�

� �� . For k � Z+, t* < t
1
 < t

2
 < ... < t

k
 < t

k+1
 with

t
k
 ��� as k ���, and I

k
 : Rn � Rn are some given functions.

Let I � R be any interval. Define PC(I, Rn) = {x : I ��� Rn, x is continuous

everywhere except at the points t = t
k
 � I and � � � � � �0, lim

kk k t tx t x t x t� �
� ��  exist

with � � � ��k kx t x t� � . For any t � t*, PC([�, t], Rn) will be written as PC(t). Define

PCB(t) = {x � PC(t) : x is bounded}. For any ��� PCB(t), the norm of � is defined as
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For given ��� t* and ����PCB(t), the initial value problem of Eq. (1.1) is
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(1.2)

Definition 1.1: A function x(t) is called a solution corresponding to � of the
initial value problem (1.2) if x : [�, �) � Rn (for some t* < �����) is continuous for
t � [�, �)\{t

k
, k = 1, 2, ...}, x(t

k
+) and x(t

k
–) exist and x(t

k
+) = x(t

k
), and satisfies (1.2).

We define by x(t, �, �) the solution of the initial value problem (1.2).
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Under the following hypotheses (H
1
)–(H

4
), there is a unique solution of problems

(1.2), we denote it by x(t) = x(t, �, �) (see [9, 18]).

(H
1
) F is continuous on [t

k–1
, t

k
) – PC(t), k = 1, 2, ..., where t

0
 = t*. For all ���

PC(t) and k � Z+, the limit � � � � � � � �, ,
lim , ,

k
kt t

F t F t�
�

� � �
� � �  exists.

(H
2
) F is locally Lipschitzian in � in each compact set in PCB(t). More precisely,

for every a � [t*, �) and every compact set G � PCB(t) there exists a
constant L = L(a, G) such that

�F(t, �(�)) – F(t, �(�))� � L��� – ���[�, t],

whenever t � [t*, a] and �, � � G.

(H
3
) For each k � Z+, I

k
(x) � C(Rn, Rn), and there exists some 0 < H

1
 � H such

that x � S(H
1
) implies that x + I

k
(x) � S(H) for all k � Z+.

(H
4
) For x � PC([�, �), Rn), the composite function F(t, x(�)) � PC([t*, �), Rn).

For any t � t* and � > 0, let

PCB�(t) = {��� PCB(t) : ����� < �}.

In [19, 20], uniformly asymptotical stability of (1.2) was studied, and some criteria
were established. In this paper, we study practical stability of (1.2), the following
definition will be used.

Definition 1.2: The impulsive functional differential equation (1.2) is said to
be

(S1) practically stable if, given (�, A) with 0 < � < A, we have ��� PCB�(�)
implies �x(t, �, �)� < A, t ��� for some ��� t*;

(S2) uniformly practically stable if (S1) holds for every ��� t*;

(S3) quasi-equi asymptotically stable in the large if for each � > 0, � > 0, ��� t*,
there exists a positive number T = T(�, �, �) such that ��� PCB�(�) implies
�x(t, �, �)� < � for t ��� + T;

(S4) quasi-uniformly asymptotically stable in the large if the number T in (S3)
is independent of �;

(S5) practically asymptotically stable if (S1) and (S3) hold with � = �;

(S6) uniformly practically asymptotically stable if (S2) and (S4) hold at the same
time with � = �;

(S7) practically unstable if (S1) does not hold.
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We define the following Lyapunov like function and functional.

Definition 1.3: A function V(t, x) : [t*, �) × S(H) � R+ belongs to class �
0
 if

(1) V is continuous on each of the sets [t
k–1

, t
k
) × S(H) and for all x � S(H), k � Z+,

the limit 
� � � � � � � �, ,

lim , ,
k

kt y t x
V t y V t x�

�
�

�  exists.

(2) V is locally Lipschitzian in x and V(t, 0) � 0.

Definition 1.4: A functional V(t, �) : [t*, �) PCB(t) � R+ belongs to class
�0(�) if

(1) V is continuous on each of the sets [t
k–1

, t
k
) × PCB(t) and for all ��� PCB(t),

k � Z+, the limit 
� � � � � � � �, ,

lim , ,
k

kt t
V t V t�

�
� � �

� � �  exists.

(2) V is locally Lipschitzian in � and V(t, 0) � 0.

Definition 1.5: A functional V(t, �) belongs to class �
0
* (�) if V ���

0
(�) and for any

x ��PC([�, �), Rn), V(t, x(�)) is continuous for t � t*.

Remark: The class v
0
*(�) will play an important role in the application of the

Lyapunov functional method to impulsive functional differential equations. For
example, the functional denoted by

� �� � � � � �, , 1
t r

t
V t x c u s du x s ds r

�

��
� � � �� �

belongs to class v
0
*(�) if c(s) is piecewise right continuous and there exits a constant

K > 0 such that for t � t*,

� � .
t

t
c u s duds K

�

��
� �� �

Let V ���
0
, for any (t, x) � [t

k–1
, t

k
) � S(H), the right hand derivative of V along

the solution x(t) of (1.2) is defined by

� �� � � �� � � �� �� �
0

, lim sup , ,
h

D V t x t V t h x t h V t x t h
�

�

�
� � � � .

Let V ���
0
(�), for any (t, �) � [t

k–1
, t

k
) × PCB(t), the right hand derivative of V

along the solution x(t) of (1.2) is defined by

� �� � � �� � � �� �� �
0

, lim sup , , .
h

D V t x V t h x V t x h
�

�

�
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In order to prove our main results, we will also need the following Lemma.
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Lemma 1.1 ([2]): Assume that m � PC(R+, R) and p � C(R+, R+) such that

� � � � � � � �
0

0

0, .
k

t

k kt
t t t

m t c p s m s ds m t t t
� �

� � � � ���

where c, �
k
 � 0 are constants for k = 1, 2, ..., then

� � � � � �� �
0

0

01 exp , .
k

t

k t
t t t

m t c p s ds t t
� �

� �� �� �

2. MAIN RESULTS

In this section, we develop Lyapunov-Razumikhin methods and derive some
sufficient conditions for practical stability for Eq. (1.2).

Let the sets K, K
i
(i = 1, 2, 3, 4) be defined by K = {��� C(R+, R+) : strictly

increasing and �(0) = 0}, K
1
 = {��� C(R+, R+) : �(0) = 0, �(s) > 0 for s > 0}, K

2
 = {�

� K
1
, �(s) is non-decreasing in s}, K

3
 = {��� K, �(s) > s for s > 0}, K

4
 = {��� K

1
,

�(s) is non-increasing in s}.

Theorem 2.1: Assume that

(i) 0 < � < A are given;

(ii) there exist functions V � v
0
, a, b � K, c � K

2
, p � K

3
 and q � K

4
 such that

a(�x�) � V (t, x) � b(�x�), for all (t, x) � [�, �) × S(H);

(iii) for any solution x(t) of (1.2), V(s, x(s)) � p(V(t, x(t)), for max{�, t–q(V(t,
x(t)))} � s � t, implies that

D+V(t, x(t)) � g(t)c(V(t, x(t))), t � t
k
,

where g : [t*, �) � R+, locally integrable;

(iv) for all k � Z+ and x � S(H
1
); V(t

k
, x + I

k
(x)) � h

k
(V(t

k
–, x)), where h

k
 � C(R+, R+)

with h
k
(s) � p–1(s) for s � 0 and k � Z+, where p–1 is the inverse of the function p;

(v) � = sup
k�Z+{t

k
 – t

k–1
} < �, and there exists a constant 0A �  such that for all

k � Z+, 0 < u � b(A),

� � � ��
�

� �� �1
1( )

;
k

k

u t

p u t

ds
g s ds A

c s

(vi) p(b(�)) < a(A), A � H
1
.
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Then the Eq. (1.2) is uniformly practically asymptotically stable with respect to
(�, A).

Proof: We first show the uniformly practical stability. Let ��� t*, ��� PCB�(�)
and x(t) = x(t, �, �) be the solution of (1.2), V(t) = V (t, x(t)). Suppose ��� [t

m–1
, t

m
) for

some m � Z+, t
0
 = t*. Then we have, for ��� t ���,

a(�x(t)�) � V(t) � b(�x(t)�) � b(�) � p(b(�)) < �(A). (2.1)

We will prove that

�x(t)� < A for t ���. (2.2)

If (2.2) does not hold, then there exist some t � [�, �) such that �x(t)��� A. Let

� �� �ˆ inft t x t A� � � � . Since �x(�)� < A, then � � 1
ˆ ,t x t A H� � � � , for �ˆ,t t� ��� ,

and either � �ˆx t A� , or � �ˆx t A�  and ˆ
kt t�  for some k. In the latter case, � �ˆx t �

� A � H
1
, by assumption (H

3
), we have � � � � � �� ��� � � �ˆ | ( )k k kk

x t x t x t I x t H .

Thus, in either case, V (t) is defined for ˆ,t t� �� �� �, and for ˆ,t t� �� �� �, we have

a(�x(t)�) � V(t) � b(�x(t)�). (2.3)

Let � � � �� �ˆinf ,t t t V t a A� � � �� �� �� . Since V(�) < a(A) and � � � �ˆV t a A� , then

� ˆ,t t� � ��� , and V (t) < a(A) for t � (�, ~t ). We claim that � � � �V t a A��  and ~t � t
k
 for

any k. If  ~t = t
k
  for some k, from assumption (iv), we have

0 < a(A) � V(~t ) = V(t
k
) � h

k
(V (t

k
–)) � p–1(V(t

k
–)) < V(t

k
–) = V(~t–) < a(A),

a contradiction, thus ~t � t
k
 for any k, and V(~t ) = a(A) since V(t) is continuous on ~t .

We next consider two possible cases:

Case (1): t
m–1

 ��� < ~t  < t
m
. Let t* = sup{t � [�, ~t ] �V(t) � p–1(a(A))}. From

assumption (vi), we know that b(�) < p–1(a(A)), and so, V(�) � b(�) < p–1(a(A)), V(t~)
= a(A) > p–1(a(A)), hence, t* � [�, t~). Moreover, V(t) � p–1(a(A)) for t � [t*, t~], V(t*)
= p–1(a(A)) since V(t) is continuous on [�, t~]. Therefore, for t � [t*, t~] and max{�, t
– q(V(t))} � s � t, we have p–1(V(s)) � p–1(a(A)) � V(t), i.e. V(s) � p(V(t)). From
assumption (iii), we have
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� �� �

� � � � � �
1* *

.
m

m

V t t t

V t t t

ds
g s ds g s ds

c s �

� �� � �
� �

On the other hand, from assumption (v), we have

� �� �

� �

� �
� � � � � � � �� �

� �

� ��
� � � � �� � � � �

� �

1 1* 1 ( ) *
,

m m

m m

V t a A t t V t

V t p a A t t V t

ds ds ds
g s ds A g s ds

c s c s c s

a contradiction.

Case (2): t
k
 < t~ < t

k+1
 for some k � m. By assumption (iv) we have V(t

k
) �

h
k
V(t

k
–)) � p–1(V(t

k
–)) � p–1(a(A)). Let t** = sup{t � [t

k
, t~] �V(t) � p–1(a(A))}. Similar to

case (1), we have t** � [t
k
, t~), V(t) � p–1(a(A)) for t � [t**,  t~], V(t**) = p–1(a(A)).

Hence, for t � [t**,  t~] and max{�, t – q(V(t))} � s � t, we have p–1(V(s)) � p–1(a(A))
� V(t), i.e. V(s) � p(V(t)). By assumption (iii) we get

� �� �

� � � � � �1

** **
,

k

k

V t t t

V t t t

ds
g s ds g s ds

c s
�

� �� � �
� �

on the other hand, from assumption (v), we have

� �� �

� �

� �� �� �
� � � � � � � �� �

� �1 1)

** 1 **
,

k k

k k

V t a A t t V t

V t p a A t t V t

ds ds ds
g s ds A g s ds

c s c s c s
� �

�
� � � � �� � � � �

� �

this is also a contradiction. Therefore, (2.2) holds, which completes the proof for the
uniformly practical stability.

Next, we shall prove that Eq. (1.2) is quasi-uniformly asymptotically stable in
the large. By the preceding argument, for given 0 < � < A with p(b(�)) < a(A) and
A < H

1
, ��� PCB�(�) implies �x(t)� < A and V (t) � b(A) for t ���. Now, let � > 0 be

given, we suppose � so small that a(�) < b(A). We then will prove that there exists a
positive number T(�, �) such that ��� PCB�(�) implies �x(t)��� � for t ��� + T. To this end,

set M = M(�, �) = sup
p–1(a(�))�s�b(A)

{c–1(s)}, choose d = d(�, �) such that 0 d A M� � .

We first claim that

p–1(u) < u – d, for a(�) � u � b(A). (2.4)

Since a(�) � u � b(A), we have p–1(a(�)) � p–1(u) < u � b(A). By assumption (v),
one can get
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� � � ��

�� �� � �� �� 1

1

( )
,

u

p u

ds
A M u p u

c s

and so � �1p u u A M u d� � � � � , thus (2.4) holds.

Let N be the smallest positive integer such that b(A) � a(�) + Nd. Set T = T(�, �) =
��+(��+ �)(N – 1), where � = q(p–1(a(�))). Let m

i
 (i = 1, 2, ..., N) be Defined by m

1
 = m,

m
i 
satisfies: t

mi–1
 < t

mi–1
+ ��� t

mi
, for i = 2, 3, ..., N. Then t

m1
 = t

m
 ��� + �, t

mi
 � t

mi–1
+ � �

t
mi–1

 + � + �, (i = 2, 3, ..., N). Therefore t
mN

 ��� + � + (� + �)(N – 1) = � + T. We will use
mathematical induction to prove that

V(t) � b(A) – id, t � t
mi

, i = 1, 2, ..., N. (2.5)
i

We first prove that

V(t) � b(A) – d, t � t
m1

. (2.5)
1

If (2.5)
1
 does not hold, then there exists some t > t

m1
 = t

m
 such that V(t) > b(A) – d.

Set � � � �� �inf mt t t V t b A d� � � � . Thus � �1,k kt t t ��  for some k � m. Since a(�) �

b(A), by Eq. (2.4), we have p–1(b(A)) < b(A) – d. From assumption (iv), we get

V(t
k
) � h

k
(V(t

k
–)) � p–1(V(t

k
–)) � p–1(b(A)) < b(A) – d.

Therefore � �1,k kt t t �� . By the continuity of V(t) on t , we get

V( t ) = b(A) – d, V(t) � b(A) – d < b(A), for t � [t
k
, t ].

Let t  = sup{t �[t
k
, t ]}V(t) � p–1(b(A))}. Since V( t ) = b(A) – d > p–1(b(A)) � V

(t
k
), then � �ˆ ,kt t t� . Moreover, V(t̂ ) = P–1(b(A)), and V(t) � p–1(b(A)) for ˆ,t t t�� �� �.

Thus for ˆ,t t t�� �� �  and max{�, t – q(V(t))} � s � t, we have

p–1(V(s)) � p–1(b(A)) � V(t),

which implies V(s) � p(V(t)) for ˆ,t t t�� �� � and max{�, t – q(V(t))} � s � t. By

assumption (iii), we get D+V(t) � g(t)c(V(t)), ˆ,t t t�� �� �. And so

� �� �

� � � � � �1

ˆ ˆ
.

k

k

V t t t

V t t t

ds
g s ds g s ds

c s
�

� �� � � (2.6)
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On the other hand,

� �� �
� �

� �� �� �
� �

� �
� �

� �� �

� �
� �

�

�
� � �� � � �1 1ˆ ( ( ))

.
V t b A d b A b A

V t p b A p b A b A d

ds ds ds ds
c s c s c s c s (2.7)

Since p–1(a(�)) � p–1(b(A)) � b(A) – d � b(A), then 
� �� �

� �b A

b A d

ds
Md

c s�
�� . From (2.6),

(2.7) and assumption (v), we get

� �� �

� � � � � � � �� �

� �1 1

ˆ ˆ

k k

k k

V t t t V t

V t t t V t

ds ds
A g s ds Md g s ds

c s c s
� �

� � � � �� � � �

This is a contradiction, so (2.5)
1
 holds.

Now, suppose that (2.5)
i
 holds for some 1 � i < N, we then prove that

V(t) � b(A) – (i + 1)d, t � t
mi+1

. (2.5)
i+1

If (2.5)
i+1

 does not hold, then there exist some t � t
mi+1

 such that

V(t) > b(A) – (i + 1)d.

Set t  = inf{t � t
mi+1

�V(t) > b(A) – (i + 1)d}, then t  � [t
k
, t

k+1
) for some k � m

i+1
.

Since a(�) � b(A) – id < b(A), from (2.4), we have p–1(b(A) – id) < b(A) – (i + 1)d. By
assumption (iv), we get

V(t
k
) � h

k
(V(t

k
–)) � p–1(V(t

k
–)) � p–1(b(A) – id) < b(A) – (i + 1)d.

Thus t  � (t
k
, t

k+1
). By the continuity of V(t) on t , we have

V( t  ) = b(A) – (i + 1)d, V(t) � b(A) – (i + 1)d for t � [t
k
, t ].

Let t̂ = sup{t �[t
k
, t ]�V(t) � p–1(b(A)–id)}. Since V( t ) = b(A) – (i + 1)d > p–1

(b(A) – id) ��V(t
k
), then � �ˆ ,kt t t� , by the continuity of V(t) on t̂ , we know

V( t̂ ) = p–1(b(A) – id), V(t) �� p–1(b(A) – id), for ˆ, .t t t�� �� �

Thus for ˆ, .t t t�� �� �  and t
mi

 � s � t, we have

P–1(V(s)) � p–1(b(A) – id) � V(t), i.e. V(s) � p(V(t)).

From inequality t
mi

 � t
mi+1

 – � and the definition of �, we know that max{�, t –
q(V(t))} ��s � t. By assumption (iii), we can get
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D+V(t) � g(t)c(V(t)), ˆ, .t t t�� �� �

And so

� �� �

� � � � � �1

ˆ ˆ
.

k

k

V t t t

V t t t

ds
g s ds g s ds

c s
�

� �� � � (2.8)

On the other hand,

� �� �

� �

� �� �� �
� � � �

� �� �� �
� �

� �� � � �

� �
1 1

1

ˆ 1
.

V t b A i d b A id b A id

V t p b A id p b A id b A i d

ds ds ds ds
c s c s c s c s� �

� � � �

� � � �
� � �� � � � (2.9)

Since

p–1(a(�)) � p–1(b(A) – id) < b(A) – (i + 1)d � b(A) – id < b(A),

it follows that � �� � � �

� �

1

b A id

b A i d

ds
Md

c s

�

� �
�� .

From (2.8), (2.9) and assumption (v), we get

� �� �

� � � � � � � �� �

� �1 1

ˆ
.

k k

k k

V t t t V t

V t t t V t

ds ds
A Md g s ds g s ds

c s c s
� �

� � � � �� � � �

This is a contradiction, and so (2.5)
i+1

 holds. By the induction, we know that
(2.5)

i
 holds for all i = 1, 2, ..., N. Thus, when i = N, we obtain

a(�x(t)�) � V(t) � b(A) – Nd � a(�), t � t
mN

,

By the definition of t
mN

, we have t
mN

 � + T, therefore

a(�x(t)�) � V(t) � b(A) – Nd � a(�), t ��� + T,

which implies �x(t)��� � for t ��� + T. The proof is complete.

It is easily seen that with minor modification in the proof for the uniformly
practical stability of Theorem 2.1, we can obtain the following corollary.

Corollary 2.1: Assume that

(i) 0 < � < A are given;

(ii) there exist functions V � v
0
, a, b � K, c � K

2
, and p � K

3
 such that

a(�x�) � V (t, x) � b(�x�), for all (t, x) � [�, �) × S(H);
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(iii) for any solution x(t) of (1.2), V(s, x(s)) � p(V(t, x(t)), for �  � s � t, implies
that

D+V(t, x(t)) � g(t)c(V(t, x(t))), t � t
k
,

where g : [t*, �) � R+, locally integrable;

(v) for all k � Z+, 0 < u � b(A),

� � � �
��

� �� �
11( )

0;
k

k

u t

p u t

ds
g s ds

c s

(vi) p(b(�)) < a(A), A � H
1
.

Then the Eq. (1.2) is uniformly practically stable with respect to (�, A).

Theorem 2.2: Assume that

(i) 0 < � < A be given;

(ii) there exist V
1
(t, x) � v

0
, V

2
(t, �) � v*

0
(�), W

i
(i = 1, 2 ..., 5) � K, � : [0, �) �

[0, �) which is L
1
[0, �) and bounded, such that

� �� � � �� � � � � � � �� �� �1 2 3 4, ,
t

W t V t W t W t s W s ds
�

�� � � � � � � � � ��
� �

where V(t, �(�)) = V
1
(t, �(t)) + V

2
(t, �(�)) � v

0
(�);

(iii) for any x � Rn, and each k � Z+,

V
1
(t

k
, x + I

k
(x)) � (1 + b

k
)V

1
(t

k
–, x), where b

k
 � 0 with 

1

;k
k

b
�

�

� ��

(iv) for any solution x(t) of (1.2), the right hand derivative of V(t, x(�)) along the
solution satisfies D+V (t, x(�)) � –W

5
(�x�);

(v) M[W
2
(�) +W

3
(LW

4
(�))] < W1(A); where � � � �

1 0
1 , .kk

M b L u du
��

�
� � � �� �

Then Eq. (1.2) is uniformly practically stable with respect to (�, A).

Proof: Let ��� t*, ��� PCB�(�) and x(t) = x(t, �, �) be the solution of (1.2), V
1
(t)

= V
1
(t, x(t)), V

2
(t) = V(t, x(�)). Then

V(�) � � � � � � �� �2 3 4

t
W W W t s ds

�
� � � � ��
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= � � � � � �� �2 3 4 0

t
W W W u du

��
� � � ��

� � � � � � �� �2 3 4 0
W W W u du

�
� � � ��

= W2(�) + W
3
(LW

4
(�)).

From assumption (iv), we have

D+V(t) � –W
5
(�x(t)�). (2.10)

By integrating the both sides of (2.10) form � to t > �, we get

� � � � � �� � � � � �5 .
k

t

k k
t t

V t V W x t ds V t V t�

�
�� �

� �� � � � �� ���

Since V
2
(t) is continuous, it follows that

V(t
k
) – V(t

k
–) = V

1
(t

k
) – V

1
(t

k
–) � b

k
V

1
(t

k
–) � b

k
V

1
(t

k
–) + b

k
V

2
(t

k
–) = b

k
V(t

k
–),

and so

� � � � � ��

�� �

� � � � .
k

k k
t t

V t V b V t

By Lemma 1.1, we see that

� � � � � � � �1 , .
k

k
t t

V t V b MV t
�� �

� � � � � � ��

Form assumption (ii) and (v), we obtain

W
1
(�x(t)�) � V(t) � M[W

2
(�) +W

3
(L�W

4
(�))] < W

1
(A), t ���,

which implies �x(t)� < A, t ���, and so Eq. (1.2) is uniformly practically stable. The
proof is complete.

3. EXAMPLES

As the applications of our main results, in this section, we consider the following
examples.

Example 3.1: Consider the following impulsive functional differential
equation
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� � � �� �
( ) ( ) ( ) ( ) ( ) ( ) ( ) , 0,  ,

( ) , .

t

k

k k k k

x t a t x t b t x t k u t x u du t t t

x t x t I x t k Z

��

� � �

� � � � � � � � � ��
�

� � ���

�
(3.1)

Where � > 0, a, b and k are continuous functions, a(t) � a, b(t) � b, I
k
(x) � C(R, R)

and �x + I
k
(x)� ����x� for all k � Z+, a, b, � are some constants, � �

0
k u du

��
� �� . For

given (�, A) with 0 < � < A < H
1
, let the following conditions hold.

(A
1
) 0 < � < 1 and � �

01 1 0;a b k u du� �

��
� � � � ��

(A
2
) there exists � > 0 such that

� �
�

�
� �

��

�
� � � � � �

� � �� ��
1 01 1

ln
, ;k kt t k Z

a b k u du A

(A
3
) ���� < A.

Then Eq. (3.1) is uniformly practically asymptotically stable with respect to (�, A).

Indeed, let ����t*, ��� PCB�(�), x(t) = x(t, �, �) be the solution of (3.1), we choose
the functions in Theorem 2.1 as following:

� �� � � � � � � � � �� ��� ��

��
� � � � � � ��

1 02 2 11 1
, , , 2 ,

2 2
V t x t x a s b s s g s a k u du A  c(s) = s,

h
k
(s) = h(s) = �2s, � � 2

,p s s
�

�
�  then p(s) > s for s > 0, and h

k
(s) � p–1(s) for s � 0. By

Corollary 2.1, one can easily see that Eq. (3.1) is uniformly practically stable.
Therefore, �x(t)����� < A for –� � t < �, and �x(t)��� A for t ���, thus, ��x(t)��(–�, t] � A.

Since � �
0

,k u du
��

� ��  we know that there exists a continuous function q : (0, �)

��(0, �), q(s) > � for s > 0, q(s) is non-increasing, such that � �� �
2 .

q s
k u du s

�

��
��

(1) Clearly, a(�x�) � V(t, x(t)) � b(�x�) holds;

(2) for the solution x(t) of (3.1), if V(s, x(s)) � p(V(t, x(t))), for max{–�, q(V(t,
x(t)))} ��s � t, then we have �x(s)� ���–1�x(t)�, and so
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D+V(t, x(t)) = a(t)x2(t) + b(t)x(t)x(t – � ) + x(t) ( ) ( )
t

k u t x u du
��

��

� ax2(t) + b�x(t)��x(t – �)� + �x(t)� ( ) ( )
t

k u t x u du
��

��

� ax2(t) + b�–1x2(t) + �x(t)� 
� �� �� �,

( ) ( )
xt q V t t

k u t x u du
�

��
��

� �
� �� �� �,

( ) ( )
x

t

t q V t t
x t k u t x u du

�
� ��

� (a + b�–1)x2(t) + A�x(t)�
� �� �� �,

( )
xt q V t t

k u du
�

���

� � � �
01 2( )k u du x t�

��
� � �

� (a + b�–1 + �–1 � � �
0 2( )k u du A x t
��

��
= g(t)c(V(t, x(t)).

Thus, condition (iii) of Theorem 2.1 is satisfied;

(3) for all k � Z+ and x � S(H
1
), we have

� �� � � �� � � �� �2 2 21 1
, , .

2 2k k k kV t x I x x I x x h V t x�� � � � � �

The condition (iv) of Theorem 2.1 is satisfied;

(4) Let � �� �01 12 ln 2 ,A a b k u du A� �

��
� � � � � � � � � ��  from condition (A

2
) ,we

know 0A �  and for any 21
, 0

2
uk Z A� � �� ,

� � � ��

�
�� �

1

1 ( )

k

k

u t

p u t

ds
g s ds

c s = � �� �1

2

01 12
k

k

u t

u t

ds
a b k u du A ds

s
� � �

� ��
� � � � � �� � �

= � �� �� �
01 1

12 ln 2 k ka b k u du A t t� �
���

� � � � � � � � ��
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� �� �01 12 ln 2 a b k u du A� �

��
� � � � � � � � � ��

= .A

Thus, condition (v) of Theorem 2.1 is also satisfied;

(5) Since A
�

�
� , then p(b(�)) < a(A). The condition (vi) of the Theorem 2.1 is

satisfied.

From (1)–(5), we know that all conditions of Theorem 2.1 are satisfied. By
Theorem 2.1, Eq. (3.1) is uniformly practically asymptotically stable with respect to
(�, A).

Example 3.2: Consider the scalar impulsive functional differential equation

� �

� � � �� �
3( ) ( ) ( ) ( ) , 0, ,

( ) ,  ,

t

k

k k k k

x t x t C t s v x s ds t t t

x t x t I x t k Z

��

� � �

� � � � � � � ��
�

� � ���

�
(3.2)

with � � � � � � 31 0, ,
t

C u du L v x x
�

� � � ��  for 0 ����� 1. Suppose that �x + I
k
(x)���

(1 + b
k
)�x� with b

k
 � 0, 

1 kk
b

�

�
� �� . Denote � �

1
1 kk

M b
�

�
� �� . For given (�, A) with

0 < � < A. Let the following conditions hold:

(i) � �
0

1.C u du
�

��

(ii) M(� + L�3) < A, where � �
0

0
.

u
L C s dsdu

�
� � �

Then Eq. (3.2) is uniformly practically stable with respect to (�, A).

In fact, we let V
1
(t, �(t)) = ��(t)� � v

0
, V

2
(t, �(�)) = � � � � � �3 *

0

t

t s
C u du s ds v

�

�� �
� � �� � .

W
1
(s) = W

2
(s) = W

3
(s) = s, W

4
(s) = s3, � � � �� � � �3

5 0
1 ,W s C u du s t s

�
� � � � ��

� � , 0,
t s

C u du
�

�
� ��  ��� PCB�(�), x(t) = x(t, �, �) is the solution of (3.1). Then
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(1) W
1
(�x(t)�) ��V (t, x(�)) � W

2
(�x(t)� + � � � �� �� �3 4 .

t
W t s W x s ds

��
� ��

(2) V
1
(t

k
, x + I

k
(x)) = �x + I

k
(x)��� (1 + b

k
)�x� = (1 + b

k
)V

1
(t

k
–, x), for k � Z+.

(3) For any solution x(t) of (3.2)

D+V(t, x(�)) � � � � � � �� � � �3 3

0

t
x t C t s v x s ds C u du x

�

��
� � � �� �

� � � � 3t
C t s x s ds

��
� ��

� � �� � � � 3

0
1 C u du x t

�
� � �

� – W
5
(�x(t)�.

(4) By condition (ii), we obtain M(W
2
(�) + W

3
(LW

4
(�))) < W

1
(A).

From (1)–(4), we know that all conditions of Theorem 2.2 are satisfied. By
Theorem 2.2, Eq. (3.2) is uniformly practically stable with respect to (�, A).
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