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1. INTRODUCTION

In the last years the interest for the study of problems involving the p-laplacian
operator have considerably increased. It is well known that –�

p
u = div(��u�p–2�u), so

for p = 2 we obtain the classical Laplace operator. The simpler form of a differential
equation with the p-laplacian term is, for instance:

–�
p
u = f(x, u) in �,

where f is a C1 function and is a bounded domain of IRN. After this first statement,
have been treated more general cases, for which is necessary the definition of weak
solution of the equation. Anyway, these concepts are by now well known. When we
deal with non-smooth nonlinear terms then the concept of weak solution fails and
the integral equation related to it becomes a differential inclusion or, more generally,
a hemi-variational inequality. To be more precise, two more general versions of the
problem, which are that we will affront, are the following:

Find u � E satisfying

(P) �
IRN (��u�p–2�u · �v + b�u�p–2uv + J0(x, u; v)) ��0 for all v � E,

where E is a Banach space, b and J are two non-smooth functions whose properties
will be given in the sequel, and

Find u � W
0
1, p(IRN) satisfying

(P�) �
IRN (��u�p–2�u · �v + J0(x, u; v)) ��0 for all v � W

0
1, p(IRN),

where J is non-smooth. Different techniques are available in treating problems with
discontinuous nonlinearities; here we will use variational methods. In particular, we
will apply a suitable version of the mountain pass theorem to the energy functional
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I related to (P) and to (P�). Even in the classical case, namely when b and J are
smooth, two difficulties arises:

(1) I doesn’t satisfy a compactness condition of Palais-Smale type;

(2) for unbounded domains we lose the compactness of the embedding of
W

0
1, p(�) in Lt(�).

To bypass the first problem we will use a version of the mountain pass theorem
which yields only a Palais-Smale sequence of I, while for the second one we will
exploit the properties of generalized gradient of non-smooth functions. When b and
J are smooth functions, then (P) and (P�) reduce to

{–�
p
u + b(x)�u�p–2u = J�(x, u) in IRN u � E,

and {–�
p
u = J�(x, u) in IRN u � W

0
1, p(IRN),

while for p = 2 we obtain an elliptic hemivariational inequality. Both these problems
have been studied carefully, under various assumptions. One of the more interesting

and general case occurs when is involved the critical Sobolev exponent i.e. ,pN

N p

� �
� ��� �

that is when the growth of the nonlinear term needs not to be subcritical, but it is
allowed to be critical too.

In this work, we seek nonnegative solutions of (P) and (P�). The starting point
for this type of research stands both in [2, 13], where is proved the existence
of positive solutions for (P) and for (P�) respectively, in the smooth case, and in
[3, 12, 20], where on examine elliptic problems in IRN. As it is impossible to collect
all the references for the results concerning these kind of problems, here we recall
only the papers in which the assumptions are somewhat comparable with ours. The
elliptic case of (P) is treated in [12], where b is assumed to be locally bounded, non
negative and coercive, while the nonlinear term has the same kind of discontinuities
that will be taken into account in Theorem 4.1. To the best of our knowledge, [20] is
the first paper where the potential b may change sign; in treating (P) we will take
this same assumption, together with another that weaken the classical one on the
coercivity. Nevertheless, in [20] the growth of f is somewhat controlled by that of b,
and the problem is classical. Between the papers dealing with the p-Laplacian,
assumptions very similar to ours can be found in [13]: the nonlinear term is exactly
huq + up*–1, so the problem has a critical growth; in Theorem 3.2 we will take into
account a more general situation of that cited above. If the result of previous paper
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can be totally comparable with our, moreover can be seen as one of the possible
smooth versions of theorem 3.2, the same is not true for that exposed in [2], where
the nonlinear term is �u�p*–2u, but the function on the left-hand side has an interval of
growth of integrability, fact that exclude one of our assumptions on b.

Before introducing the preliminary results, that will be exposed in Section 2, we
summarize the basic definitions that will be useful through all the paper.

Let (E, �����) be a real Banach space. If ��> 0, we define B� = {x � E : ��x�� < �},

B� = {x � E : ��x������}, and �B� = {x � E : ��x�� = �}.

We denote by E* the dual space of E, while ��, ·��stands for the duality pairing
between E* and E.

A function g : E � IR is called locally Lipschitz when to every x � E there
correspond a neighbourhood U

x
 of x besides a constant L

x
 ��0 such that

�g(z) – g(w)��� L
x
��z – w�� z, w � U

x
.

If x, z � E, the symbol g0(x; z) indicates the generalized directional derivative of
g at the point x along the direction z, namely

� � � � � �0

, 0

; lim sup .
w x t

g w tz g w
g x z

t�� �

� �
�

It is known (see [10], Proposition 2.1.1) that g0 turns out upper semicontinuous
on E × E.

We denote by �g(x) the generalized gradient of g at x, i.e.

�g(x) = {x* � E* : �x*, z��� g0(x; Z) z � E}.

Proposition 2.1.2 in [10] ensures that the set �g(x) is nonempty, convex, and
weak* compact. Hence, it makes sense to write

m
g
(x) = min{��x*��

E*
 : x* ���g(x)}.

We say that {x
n
} ��E is a Palais-Smale sequence at a given level d � IR for g if

g(x
n
) � d � IR and m

g
(x

n
) � 0,

while a critical point of g is any x � E satisfying 0 ���g(x), which clearly means
g0(x; z) ��0 for all z � E.

We denote by ��� and by ���
t
 the usual norms on IRN and on Lt(IRN), for all

t � [1, +�), while W
0
1,p(IRN) indicates the closure of C

1
�(IRN) with respect to the norm
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� �1/

1,
: ,

pp p

p p p
u u u� � �

or to the equivalent one

��u��
1,p

 = ��u�
p
.

From now on we take p � [2, N) and we put * pN
p

N p
�

�
. As W

0
1,p(IRN) is

embedded in Lt(IRN) for any t � [p, p*], for such t we denote by c
t
 the constant of the

embedding:

�u�
t
 ��c

t
��u��

1,p
 u � W

0
1,p(IRN).

Another embedding will play a basic role trough all the paper:

W
0
1,p(IRN)  Ls(B

R
) compactly, for any s � [p, p*[,

so if {u
n
} is a sequence bounded in W

0
1,p(IRN), then it converges strongly to some u �

Ls(B
R
); a diagonal argument shows that u

n
 � u a.e. in IRN; the boundedness of {u

n
}

in Lt(IRN), together with its convergence a.e., allows to apply Remark 8 in [3], which
guarantees that u

n
 � u weakly in Lt(IRN) for any t � [p, p*].

We first consider (P), that is the natural generalization of the classical problem
involving the p-Laplacian:

–�
p
(u) + b(x)up–1 = f(x, u) in IRN,

in which the nonlinear term f is not necessarily continuous; after we will take into
account the situation in which b ��0. In all the two situations, we will impose two
different growth conditions on f; we emphasize that for bounded domains the second
one is more general than the first one, but the same is not true in IRN. In Theorems
3.1, 3.3, 4.1 and 4.3 too, we take into account the case of a function f : IRn × IR � IR
which is measurable and satisfies the following growth condition with respect to the
second variable, uniformly in the first one:

there exist q �]p – 1, p* – 1[ and C > 0 such that

�f(x, s)��� C(�s�p–1 + �s�q) a.e. (1)

Under the assumptions above the integral function

� � � �
0

, ,
s

F x s f x t dt� �
is measurable in the first variable and locally Lipschitz with respect to s. En effect,
if we take any s � IR, and a � > 0, then
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� � � � � � � � � �� �2

1

1

1 1 2 2 1, , ,
s p q

s
F x s F x s f x s ds C s s s s

�
� � � � � � � � ��

= L
s
�s

2
 – s

1
� s

1
, s

2
 � B(s, �).

In addiction to (1), we assume f satisfies:

� � � � � �10

,
lim sup : , IR , 0,N

p

f x s
ess x s

s� ��

� �� �� � � �� �
� �� ��

� � (2)

and

� � � �: 0 , ,p F x s s f x s� � � � ��  a.e. in IRN × [0, +�], (3)

where

� � � �� �
0

, lim sin , : ,f x s es f f x t t s
��

� � �
�

�

� � � �� �
0

, lim sup , : .f x s ess f f x t t s
��

� � �
�

�

We denote by F0 and �F the generalized directional derivative and the generalized
gradient of F with respect to the second variable and we put

J(x, s) = –�s�p–1 – F(x, s) or J(x, s) = –F(x, s),

accordingly to the situation in which we consider the critical or the subcritical case.
It is well known (see, for instance [9], [15]) that

� �
� �
� �

� � � � � �0
, if 0,

, ; and , , , , .
, if 0,

f x t z z
F x t z F x t f x t f x t

f x t z z

� �� � �� � �� � ����

After we will take into account the situation of a measurable function f : IRN × IR
� IR satisfying (3) in add to the following one:

there exist q � [0, p* – 1[, r �]p – 1, p* – 1[, t � [p, p*], t > q + 1, C > 0 and a function

h � 0, h � L�(IRN) � L1(IRN), with 
� �

,
1

t
t q

�
� �

 such that:

�
 
f(x, s))��� h(x)�s�q + C�s�r (x, s) � IRN × IR. (4)

As done above, we denote by F0 and �F the generalized directional derivative
and the generalized gradient of F with respect to the second variable; J too has the
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same structure. It is a simple matter to verify that F is locally Lipschitz, but not
uniformly in x. In both cases the following Lemma hold:

Lemma 1.1: There exist C
1
, C

2
 > 0 such that f(x, s) � C

1
s�–1 – C

2
 for a.e. (x, s) �

IRN × [0, +1].

Proof: The proof carries out in the same way in the two situations. For more
details see [12], Lemma 5.

When we deal with the problem (P), we have to give some basic assumptions on
b. Let b : IRN � IR be a measurable function and B a nonnegative real number. We
assume that

b(x) ��–B a.e. (5)

In several papers on impose that lim
x�+�b(x) = �; here we weaken this assumption

by taking condition (6) that we are going to give. If G is an open subset of IRN and s
� [p, p*[, we set

� � � �� �1,
0 : 1p

s s
G u W G u� � ��

and

� �
� �

inf .
s

p p

s Gu G
G u b u

�
� � � ���

We require that for any r > 0 and any sequence {x
n
} � IRN which goes to infinity

one has

� �lim ,s nn
B

���
� � �� (6)

where B
n
 = B(x

n
, r).

Let E be the space:

� � � �� �1,
0 IR

IR : .
N

pp NE u W b x u� � � ���
Our last assumption is the following:

1

1

inf 0.

p

p p

u E
u

u b u
�
�

� � � � �� (7)
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2. PRELIMINARIES

This section is devoted to the statement of all the auxiliary results that will be used
in the proof of the main theorems. The following version of the mountain pass theorem
for locally Lipschitz functions whose don’t satisfy the classical Palais-Smale condition
plays a basilar role in showing the existence of solution to (P) and to (P�).

Theorem 2.1: Let E be a real reflexive Banach space and let I : E � IR be a
locally Lipschitz function, with I(0) = 0. Assume that there are �, ��> 0 such that
I(u)   ����on �BP and that there is e � E, with �e� > �, such that I(e) ��0. If we set

� := {��� C0([0, 1], E) : �(0) = 0, �(1) = e}

and

� �
� �� �

0,1
: inf sup ,

t
c f t

��� �
� �

then there is a (PS)
c
 sequence for I.

The following Lemmas and Propositions enable us to introduce the properties of
E and yield a sufficient condition in order to (6) holds, in add to an equivalent one.
In the sequel, we will omit the dependence from x � IRN of the functions involved.

Lemma 2.1: Assume (5) holds. If u � E, then � �
1

IRp Npb u L� .

Proof: Let be u � E. By using (5) we obtain

1

IRN

pb u� =
0 0

p p

b b
b u b u

� �
� �� �

=
0 0 IRN

p p p

b b
b u b u b u

� �
� � �� � �

=
0 IR 0 IR

2 2
N N

p p p p

b b
b u b u B u b u

� �
� � � �� � � �

IR
2 .

N

p p

p
B u b u� � � ���

Proposition 2.1: Assume (5) and (7) hold. Then

� �
1

N

p p p

IR
u u b u� � ��
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is a norm on E. Furthermore there is c̃ > 0 such that �u�
1, p

 ��c̃��u�� for any u � E and
�����

1, p
 and ����� are equivalent.

Proof: The first statement is obvious, so we begin by proving the inequality
��u��

1, p
 ��c̃��u�� for any u � E. Assume, on the contrary, that there exists a sequence

{u
n
} ��E such that

��u
n
��

1, p
 = 1 and 

1
N

p p

n nIR
u b u

n
� � ��  for any n � N.

Put n
n p

n

u
v

u
� . Then ��v

n
��

p
 = 1. As �

IRN��v
n
�p + b�v

n
�p ���

1
, from this we deduce that

1N

p p p

n n n pIR
u b u u� � � �� , so 

1

1p

n p
u

n
�

�
 and u

n
 � 0 in Lp(IRN). Due to (5), we get

1 1
1

N N

p p p

n n np IR IR
B u b u u

n n
� � � � � � �� �

and passing to the limit for n � +� we obtain the contradiction 0 ��–1. We pass now
to verify that E is a Banach space with respect to �����. If {u

n
} is a Cauchy sequence

with respect to �����, then there is � �1,
0 IRp Nu W�  such that u

n
 � u in � �1,

0 IRp NW . Due

to Lemma 2.1 � ��
1

IRp Np
nb u L  for any n � N and the same arguments of the above

Lemma show that 
1
p

nb u
� �
� �
� �

 is a Cauchy sequence in Lp(IRN), so 
1
p

nb u v�  in Lp(IRN)

and a.e., up to a subsequence. As u
n
 � u a.e. we deduce that 

1
pv b� , a, e; so

1 1
p p

nb u b u�  in Lp(IRN); bearing in mind that �u
n
 � �u in Lp(IRN), we conclude

that u
n
 � u in E.

Lemma 2.2: Let ����IRN be an open set and let pN
p s t

N p
� � �

�
. Then there is

�
1
 �[0, 1] such that

�
t
(�) � C(s, t, N, �)(�

s
(�))�1.
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If pN
p t s

N p
� � �

�
 then there is �

2
 > 0 such that

�
t
(�) � C(s, t, N, �)(�

s
(�))�2.

In particular �
p
 � �

1
 for any t � [p, p*[.

Proof: Due to previous Lemma and Gagliardo-Niremberg inequality we can
write

�
t
(�) = � � � � � � � � � � � � � �1, 1, 1,

0 0 0
1\ 0 \ 0 \ 0

1
inf inf inf

p p p

p p p

p pp pu W u W u W
t ss

u u u

Cu uC u u

�

� ��� � � � � �

� �
� �� �
� �
� �

= � �� �1
sC

�
� � .

The proof of the second inequality carries out in the same way.

Lemma 2.3: Condition (6) holds if and only if

� �lim \ .N
R s RIR B��� � � �� (8)

Proof: We observe that �
s
(�

2
) ���

s
(�

1
) for all �

1
 ���

2
. If (8) holds then for any

M > 0 we can find 0R �  such that for any R R�  one has � �IR \N
s RB M� � . If we

fix r > 0 and a sequence {x
n
} � IRN which goes to infinity, than IR \N

n RB B�  for n

sufficiently large, so, for such n, �
s
(B

n
) > M and the conclusion follows immediately.

For the second part of the proof we suppose by contradiction that we can find two
sequences {R

n
} � IR and {u

n
} ��E such that R

n
 � +�,

supp IR \
n

N
n Ru B� , ��u

n
��p � C and �u

n
�
s
 = 1 for any n � N.

As {u
n
} doesn’t go to 0 in Ls(IRN), due to a classical compactness result

(see [14]) we can find a sequence {x
n
} � IRN and a number r

0
 > 0 such that �

B(xn, r0)
�u

n
�s

� c
0
 > 0. Being supp IR \

n

N
n Ru B� , for any n � N there is a point y

n
 � B(x

n
, r

0
) such

that �y
n
��� R

n
 so R

n
 ���y

n
��� r

0
 + �x

n
� and �x

n
��� +�. Now, for any n � N we take a

function �
n
 � C

c
�(IRN) with the following characteristics:

0 ���
n
 ��1, �

n
 ��0 in IRN \ B(x

n
, 2 r

0
), �

n
 � 1 in B(x

n
, r

0
).
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The function v
n
 = �

n
u

n
 is bounded on E, supp v

n
 ��B(x

n
, 2r

0
) and �

B(xn, 2r0)
 �v

n
�s ���

B(xn,

r0)
 �v

n
�s = �

B(xn, r0)
 �u

n
�s c

0
 > 0. From these inequalities we infer that �

s
(B

n
) ��L for any n

� N and this contradicts ours assumptions.

We omit the proof of the next Lemma, because it is the same of that given in
[20], Lemma 2.3.

Lemma 2.4: Let {�
n
} ��IRN be a sequence of open sets, with lim

n�+� �w
n
� = 0.

Then, for any C > 0 and for any s � [p, p*[ one has

1,

lim sup 0.
n

p

s

n u C
u

��� �

� �
�� �� �

� �
��

Lemma 2.5: Assume that for any M, r > 0, {x
n
} � IRN, with �x

n
��� +�, one has

lim
n�+���M

 � B
n
� = 0, where �

M
 = b–1([–�, M]). Then (6) holds for any s � [p, p[.

Proof: Thanks to Lemma 2.3 it suffices to prove (6) only for s = p. Suppose by
contradiction that (6) is not satisfied for s = p. We can find a number r > 0 and two

sequences {x
n
} � IRN and � � � �1,

0
p

n nu W B�  such that

�x
n
��� +�, �

Bn
 ��u

n
�p + b�u

n
�p ��C, and �

Bn
�u

n
�p = 1.

Now, we fix M > 0 and we put �
M
, n = �

M
 � B

n
; bearing in mind (5), we get

n

pp

n nB
C u b u� � � =

, ,, \ , \n M n n M n

p p p p

n n n nM n B M n B
b u b u b u M u

� � � �
� � �� � � �

,, \n M n

p p

n nM n B
B u M u

� �
� � �� �

= � �
, n

p p

n nM n B
B M u M u

�
� � �� �

= � �
,

.
M n

p

nB M u M
�

� � �� (9)

Recalling that lim
n�+� ��

M, n
� = 0, for n sufficiently large we can write

� �,
,

2

p

nM n

M
u

B M�
�

��

so we infer 
2
M

C �  which is an absurd, as M is arbitrary.
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Lemma 2.6: If (5), (6) and (7) hold, then E is compactly embedded in Lt(IRN) for
any t � [p, p*].

Proof: Let be u
n
 � 0 in E; then ��u

n
���� K, u

n
 � 0 in Lt(B

R
) for any R > 0 and a.e.

If we choose ��� C�(IRN), ��� 0 on B
R
, ��� 1 on IRN \ B

R+1
, 0 ����� 1, then we obtain

�u
n
�
t
 ���(1 – �)u

n
�
t
 + ��u

n
�
t

� � � � � � � �
1 1

1 1 1 1

IR \ IR \
.

N N
R R R R

t t t tt t t tt
n n n nB B B B

u u u u
� �

� � � � �� � � �
Due to (6), fixed any M > 0 the following inequality holds for a suitable R > 0:

�
t
(IRN \ B

R
) > M;

corresponding to such R and to � > 0, 
1

min ,
K

M B
� �� � �
� �

� , we can find n N� such

that �
BR+1

�u
n
�t < � for any n n� . Bearing in mind the definition of �

t
, (5), and the fact

that ���un
�t < � for any ����B

R+1
, we can write

IR \N
R

t

nB
u� � � � IR \

1

IR \
N

R

t t

n nN B
t R

u b u
B

� �
� �

� � � IR

1

IR \
N

R

t t t

n n nN B
t R

u b u b u
B

� �� � �� �� �� � �

� � �
2

,
IR \

R

t t

n nB

N
t R

u B b u K B K
M MB

� �
� �

�

� �
����

so

1 1

1 2t tt

n

K
u n n

M M
� � � �� � � �� � � �
� � � �

(11)

and u
n
 � 0 in Lt(IRN).

After stating those preliminary results, we pass now to the construction of the
energy functionals: we treat in parallel all the situations that may occur because
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their behavior is similar. For our convenience we assume f(x, s) � 0 for any s < 0. In
the first case, namely when (5)–(7) and (1)–(3) hold, the functional

� � � �� �� � � �� �
IR 0 IR

, ,
N N

u x
u f x t dt F x u x dx� � �� � �

is well defined and locally Lipschitz on E. In fact, if we take u
0
 � E, > 0, and u, v �

B(u
0
, �), then the embedding of E in Lt(IRN) and Hölder’s inequality ensure that we

can find L
u0

 > 0 such that

��(u) – �(v)� ��L
u0
��u – v��.

As our goal is to treat the case when b � 0 too, we explicitly observe that,

independently from conditions (5)–(7), can be defined on the whole space � �1,
0 IRp NW

and, beside to be locally Lipschitz in this space too, the following well known
properties hold:

• � � � �1,
0

0 0; ; , ;pE W
u v u v u v E� � � � �

• � � � � � �� � � �� � � �
�

� � �� �1,
0

0 0

IR 0
; , ; ,p NW v

u v F x u x v x dx f x u x v x dx

� �� � � � � �1,
00

, , IR ;p N

v
f x u x v x dx u v W

�
� � ��

• � � � �1,
0

.pE W
u u�� � ��

The first inequality blows from the definition of generalized directional derivative,
the proof of the second one is substantially the same of Lemma 2.6 in [15], while the
third one can be found in [9]. It is worthwhile to punctuating that for any w ����(u)

and any � �1,
0 IRp Nv W�  one has

0 0 0 0 0 0
, ,

v v v v v v
fv fv fv w v fv fv fv

� � � � � �
� � � � � �� � � � � � (12)

� � � �1 1

1IR
,

N

p q p q

p p q q
w v C u v u v C u v u v

� �

�
� � � �� (13)

and

0 0
, .

u u
fu w u fu

� �
� �� �
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If we assume (4) and (3) in place of (1)–(3) then

� � � �� �
IR

,
N

u F x u x dx� � �
is well defined and locally Lipschitz on E. In fact, if we take u

0
 � E, ��> 0, and u, v

� B(u
0
, �) then

��(u) – �(v)��� (�h�� a1
 + a

2
) ��u – v��,

where a
1
, a

2
 depend from �, t, q, r and c. Now, as above, � can be defined on

� �1,
0 IRp NW  and, beside to be locally Lipschitz in this space too, arguing in a standard

way and owing to the Fatou’s Lemma we obtain the same inequalities written above
for �, in add to (12), while (13) takes now the form:

� �� � � � �
� � � �� 1 1IR

,
N

q r q r

t t r r
w v h x u v C u v h u v C u v (14)

3. THE CRITICAL CASE

We begin by taking into account the case in which the nonlinearity can be critical,
but it is necessary to point out that the term with critical growth is classical, so (P)
and (P�) can be written as:

Find u � E satisfying

(P) �
IRN (��u�p–2�u · �v + b�u�p–2uv –|u|p*–2uv + (–F)0(x, u; v) ��0 �v � E,

and

Find � �1,
0 IRp Nu W�  satisfying

(P�) �
IRN (��u�p–2�u · �v – �u�p*–2uv + (–F)0(x, u; v) ��0 �v � W

0
1, p(IRN).

When we deal with (P) the energy functional is either

� � � �� � �� � �*

*

*

1 1
,

p p

p
I u u u u u E

p p

or

� � � �*

*

1 1
.

p p

p
I u u u u u E

p p
� � �� � �

Classical properties of generalized directional derivatives, together with all the
others cited in the previous section, allow us to majoring I0(u; v) in the following way:
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I0(u; v) = �
IRN

(��u�p–2�u � �v + b�u�p–2uv – �u�p*–2uv) + (–�)0(u; v)

� �
IRN

(��u�p–2�u � �v + b�u�p–2uv – �u�p*–2uv) – �w, v�,

where w ����(u), while for I
1
0(u; v) we actually have

I
1
0(u; v) = �

IRN
(��u�p–2�u � �v + b�u�p–2uv – �u�p–2uv) + (–�)0(u; v)

� �
IRN

(��u�p–2�u � �v + b�u�p–2uv – �u�p*–2uv) – �w, v�,

where w ����(u).

When b ��0, namely when the problem becomes (P�), both I and I
1
 are defined on

� �1,
0 IRp NW � but their structure is the same, that is the norm of u to the p-power

minus a function. We begin the section with two lemmas regarding the Palais-Smale

sequences of I and of I
1
. It is superfluous to stress that we will give the proofs for the

first case only, because when b � 0 they carry out in the same way.

Lemma 3.1: Any (PS)
c
 sequence of I and of I

1
 is bounded.

Proof: We begin by examining the behavior of the (PS)
c
 sequences of I. If {u

n
}

is a (PS)
c
 sequence for I, then m

I
(u

n
) � 0, so for any n � N there exist �

n
 ���I(u

n
), as

well as �
n
 ���(u

n
) such that

• ��
n
, v� = �

IRN
(��u

n
�p–2�u

n
 � �v + b�u

n
�p–2u

n
v – �u

n
�p*–2u

n
v) – �w

n
, v� �v ��E;

• ���
n
��

E*
 � 0;

Thanks to (3), we can write

� � � � � �� �
IR

1 1
, , ;

Nn n n n nu u x f x u x dx w u n N� � � � �
� ��

if we choose � = min{�, p*} then we obtain the inequalities below, from which the
boundedness of {u

n
} follows immediately:

I(u
n
) = � � � �1 1 1

, , ,
p

n n n n n n n n

p
I u u u u u w un p

� �
� � � �� �
� � � �
� �

*

* * *

*

*

1 1
.

p p

n n n n n np E E

p p
u u u u

p p

�� � �
� � � �

� � � �
� �
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Arguing in the same way, we obtain

� � *1

1
,

p

n n n nE

p
I u u u

p

� �
� �
� �

�

and the Lemma is totally proved.

Lemma 3.2: Any (PS)
c
 sequence, nonnegative a.e., satisfies �u

n
 � �u a.e. in

IRN.

Proof: We give only a sketch of the proof, which follows essentially the lines of
that of Lemma 7 in [13], so we refer to that paper for more details. Let {u

n
} be a

(PS)
c
 sequence for I, non negative a.e. Then we can suppose that u

n
 � u in Lt(IRN)

for any t � [p, p*] and a.e., as well as u � a.e.; furthermore

* *

1

,
i

j
p p
n i x

i

u u
�

� � � � ����

while for {�u
n
} we may assume that

��u
n
�p � �

for some measure �. If there is i such that �
i
 > 0 then we choose an �

0
 > 0 such that

B�0(xi
) � B�0(xk

) = Ø �
i
 � k, 

0

1
1, ...,

2kx k j� � �
�

and we put

� �1 1
2

: \ .j
k kA B B x�� �� �

�

Let � and � be two real numbers satisfying 0 < � < ��and � a function belonging

to C
0
�(IRN) such that ��� 1 on 1

2

, 0B � �  on 1
cB . Starting from we construct a new

function: � � � �
1

j k
k

x x
x x

�

�� �� � � �� �
� �

��� �
�

� We can write

0 � �
A�

 (��u
n
�p–2�u

n
 – ��u�p–2�u) � (�u

n
 – �u)

� �
IRN(��u

n
�p–2�u

n
 – ��u�p–2�u) � (�u

n
 – �u)��

= �
IRN(��u

n
�p�� – ��u

n
�p–2�u

n
 ���u�� – ��u�p–2�u

n
 � �u�� + ��u�p��)
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= � �*

IR
,

N

p p p
n n n nu bu u w u� � � �� � � � �� � � �

� �2 1 * 1

IR
,

N

p p p
n n n n nu u u bu u u u w u

� � �� �� � � �� � � �� �� �� � � � �� � � �

� �2| | | |
N

p p
nu u u u�

� �� � � �� � ��� � �

� � � �1 * * 1

IR
,

N

p p p p
n n n n n nbu bu u u u u w u u� �� � � � � � �� � � � � �� � � � �

= (��
n
, u

n
����– �

IRN��u
n
�p–2�u

n
 � ���un

) – (��
n
, u���

– �
IRN��u

n
�p–2�u

n
 � ���u) – I

3, n, � + I
4, n, �

= I
1, n, � – I

2, n, � – I
3, n, � + I

4, n, �.

It is obvious that lim
n�+���n

, u
n
��� = 0, as well as lim

n�+���n
, u

n
��� = 0, so,

owing to Claim 3 at p. 65 in [13], we can affirm that

1, , 2, ,lim lim 0.n n
n n

I I
��� ���

� �� �

It is a simple matter to see that lim
n�+�I

3, n, � = 0, so we have only to examine
I

4, n, �. Now, (13) yields

� � � �1

IR
, ,

N

p q
n n n n n nw u u C u u u u u u�� � � � ��� � �� � �

so, bearing in mind the properties of � � � �1 ,p q
n n n nu u u u u u� � �  and of �� we conclude

that

� �lim , 0n nn
w u u

���
� ���

and, finally

4, ,lim 0.n
n

I
���

��

When we deal with I
1
, we proceed in the same way. The only difference stands

in (I
1
)

4, n, �, for which we have

� � � � � �
,

1 * * 1
1 4, IR

, ,
N

p p p p
n n n n n nn

I bu bu u u u u w u u� �� � � � � � ��� � � � � �� � � � �

with w
n
 ���(u

n
) and
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� � � �� �IR
, .

N

q r
n n n n n nw u u h x u u u Cu u u� � � � ��� � �� � � (16)

Now, arguing as above, we conclude that

� �1 4, ,
lim 0.

nn
I

���
�
�

We have so proved that

� � � �2 2
lim 0.

p p

n n nAn
u u u u u u

�

� �

���
� � � � � � � �� ��

The same result holds also when �
i
 ��0 for any i = 1, ..., j. Finally, the same

reasoning made at p. 66 in [13] leads to the conclusion. It is although obvious that
when b ��0 we proceed exactly in the same manner.

Theorem 3.1: Assume (1)–(3) and (5)–(7) hold. Then (P) has a solution which
is non negative a.e.

Proof: The proof is quite standard and we split it into two parts. In the first of
them we show that we can apply Theorem 2.1 to the energy functional related to (P),
and in the second one we prove that the critical point obtained turns out a non negative
solution to (P). For the sake of completeness we remember that

I : E � IR  � � � �*

* *

1 1p p

p
I u u u u

p p
� � ��

is locally Lipschitz on E; we have to verify the mountain pass geometry. Obviously

I(0) = 0. Let be � � � �IR \ 0 ,N
cv C��  v � 0 a.e. Then

� � � �
*

*

* *

p p
p p

p

t t
I tv v v tv

p p
� � ��  for any t � 0

and Lemma 1.1 allows us to write

� � � �� �� ���� � � �� � 1
1 2IR 0N

p ptv xp pt t
I tv v C s C ds v

p p

1 1
2 2 1IR IR

.
N N

p
p pC t t C t

v v C t v v v C t v
p

� �
��
�

� � � � �
� �� � (17)
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Being � > p we can conclude that there is 0t �  such that

� � 0 .I tv t t� � � (18)

In a standard way we obtain that for any � > 0 there is a number A� > 0 such that

f(x, s) < �sp–1 + A�s
q s > 0

and from this last inequality we infer

� � � � � � �

� ��

�
� � � � � � �

� �

� �
1

1 11

1
,

1 1

p q

p q p qp q

p q

cc A ccA
u u u u u u E

p q p q
��

��

where c
p
 and c

q
 are the constants of the embeddings of � �1,

0 IRp NW  in Lp(IRN) and in

Lq(IRN), while c̃ is that obtained in Proposition 2.1. If ��u�� = � then

� � � �
* 1

*
1 * 2*

1
1

p p q
p
pI u K c A K

p p q

�� � �
� � � �

� ��

and for � and � sufficiently small one has

I(u) ��� > 0. (19)

So, we can apply Theorem 2.1 to I, which guarantees the existence of a (PS)
c

sequence for I. Now, we point out two facts:

• if ����� then ��� ��� too, because e = tv � 0 a.e.;

• I(�u�) ��I(u).

By virtue of the remarks above we can assume that the (PS)
c
 sequence obtained

through the mountain pass theorem is non negative a.e. Let {u
n
} be such a sequence.

Due to Lemma 3.1 {u
n
} is bounded, so we can extract a subsequence which converges

weakly in E and in � �1,
0 IRp NW , and a. e. in IRN to a function u � 0 a.e. Lemma 3.2

guarantees that �u
n
 � �u a.e.; being {�u

n
} bounded in Lp(IRN) we can apply Remark

8 of [13] and we obtain

lim
n�+� �

IRN ��u
n
�p–2�u

n
 ���� = �

IRN ��u�p–2�u � �� ����� � �1,
0 IRp NW . (20)

An analogous result holds for b�u
n
�p–2u

n
 and for �u

n
�p–2u

n
:

lim
n�+���IRN b�u

n
�p–2u

n
� = �

IRN b�u�p–2u� ������E, (21)
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lim
n�+���IRN �u

n
�p*–2u

n
� = �

IRN �u�p*–2u� ������ � �1,
0 IRp NW , (22)

while for {w
n
} we actually have

lim
n�+���–w

n
, v� = �–w, v� v �� � �1,

0 IRp NW

and

�–w
n
, v� = �w

n
, –v�����

IRN F0(x, u
n
; –v)

= �
IRN(–F)0(x, u

n
; v) n � N, v � � �1,

0 IRp NW �

Due to the properties of f and of {u
n
}, after passing to the limit we can write

�–w, v�����
IRN

 
(–F)0(x, u(x); v(x))dx v � � �1,

0 IRp NW . (23)

Finally, we remember that ���
n
��

E* 
� 0, and this, together with (20), (21), (22)

and (23) yields

�
IRN(��u�p–2�u�v + b�u�p–2uv – �u�p–2uv + (–F)0(x, u; v) ��0 v � E

and u turns out a non negative solution to (P).

Theorem 3.2: Assume (3), (4) and (5)–(7) hold. Suppose furthermore that

� �
1

1

1

4
p q

q

t

q
h s

p cc
� �

��

�
�

�

for some s � IR satisfying

� � � � 1*
* 1* 1
*

1
,

1 2

r
p rp p r p

cc p C cc
s s

p r p

�
�� � �� �

�

� �

whenever q + 1 – p � 0. Then (P) has a solution which is non negative a.e.

Proof: We begin by proving that I
1
 has a mountain pass geometry. This part of

the proof is very similar to that of Lemma 3 in [13] so we omit some detail. Firstly
we observe that:

� � � � 1 1

,
1 1

q r
h x s C s

F x s
q r

� �

� �
� �

 for any s � IR,
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so

� � � � � � � �
* 1 1

* 1 1* 1

*

1
1 1

p q r
p p q rp t r

cc h cc C cc
I u u u u u

p p q r

� �
� ���� � � �

� �

� � �

� � � � � �� �
� � � � ���

� �
� �� � � �
� �� �
� �

� � �
* 1 1

* 1 1* 1
*

1
1 1

p q r
p p p q p r pp t r

cc h cc C cc
u u u u

p p q r

* 1 11
.

p p p q p r p
u u u u

p
� � � � �� �

� �� �� � �� �
� �

Now, bearing in mind the condition imposed on �h��Ø when q + 1 – p ��0, surely
we can find a ��> 0 such that I(u) > 0 whenever ��u�� = �. The proof of

I(e) ��0 (24)

is the same of that of previous theorem. Now, Theorem 2.1 yields a (PS)
c
 sequence

of I
1
. Arguing exactly as above we obtain that the sequence found converges to a

point u which is a non negative solution to (P).

Theorem 3.3: Assume (1)–(3) hold. Then (P�) has a solution which is non
negative a.e.

Theorem 3.4: Assume (3), (4) hold, in add to

1
1

1
4

p q
q
t

q
h s

pc
� �

��

�
�

for some s � IR satisfying

* 1
* * 11 1

,
* 1 2

p r
p p p r pr

c Cc
s s

p r p

�
� � ��� �

�

whenever q + 1 – p � 0. Then (P�) has a solution which is non negative a.e.

Remark 3.1: All previous results don’t guarantee that u is a nontrivial solution,
but under some additional assumption on f we obtain a nontrivial, positive solution
for (P�).
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Corollary 3.1: Assume (3), (4) hold, with C = 0, in add to

1
1

1
4

p q
q
t

q
h s

pc
� �

��

�
�

for some s � IR satisfying

*
* * 1

,
* 2

p
p p pc

s
p p

� �

whenever q + 1 – p ��0. Suppose furthermore that f(x, s) > 0 whenever s > 0. Then
(P�) has a positive solution.

Proof: The only difference with respect to previous results stands in the choice
of the function e. In fact in this case we take

� � �

�

� ��
� ��� ��
� ��� �
� �

2

1

1
.

N

p

N p
p p

p

N p
N

p
x

x

�

�
�

�

It is well known that 
*

**

p p N
pp

c�� �� �� � . As

� � � �
* *

*
* ** *

Np p p p
pN N

p p

ct t t t
I t c t c

p p p p N

�
� �� � � �

� � �� � � �� � � �
� � � �

� �� � (25)

it is obvious that we can take t > 0 such that I(t��) < 0, as well as *
N

pc
c

N

�

� . Now,

assume by contradiction that the nonnegative (PS)
c
 sequence obtained trough the

mountain pass theorem converges weakly to u � 0. Then the following equalities
hold true:

� �lim , lim 0;n n nn n
w u u

��� ���
� � �

from these we deduce that

*

*
lim lim ,

p p

n n pn n
u u l

��� ���
� �
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so

As I(u
n
) � c we obtain

*1
,

N
pc

c
N N

�

� �

which contradicts previous inequality.

Remark 3.2: The result above is the nonsmooth version of Theorem in [13],
where the function f is exactly h(x)sq.

4. THE SUBCRITICAL CASE

When we deal with a problem with subcritical growth we can give a more precise
result; in fact in this case we can guarantee that the solution is nontrivial. It is obvious
that from now on we take:

� � � �1
,

p
I u u u

p
� ��

and

� � � �1

1
.

p
I u u u

p
� ��

Lemma 4.1: Any (PS)
c
 sequence of I and of I

1
 is bounded.

Proof: Arguing exactly as in Lemma 3.1 we obtain the inequalities below for
any (PS)

c
 sequence of I and of I

1
:

I(u
n
) = � �1 p

n nu u
p

��

= � �1 1 1
, ,

p p

n n n n n n n

p
u u w u w u u

p
��

� � � ��
� � � �

= � �1 1
, ,

p

n n n n n n

p
u u w u u

p
��

� � ��
� � �

�

� *

1
,

p

n n nE

p
u u

p

� �
�

� �
�
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I
1
(u

n
) �

*

1
,

p

n n nE

p
u u

p
� �

�
� �

�

Lemma 4.2: Any (PS)
c
 sequence, nonnegative a.e., satisfies �u

n
 ���u a.e. in

IRN.

Theorem 4.1: Assume (1)–(3) and (5)–(7) hold. Then (P) has a solution which
is positive a.e.

Proof: We consider

I : E � IR   � � � �1
.

p

nI u u u
p

� ��

Arguing exactly as in Theorem 3.1 we find u, a nonnegative solution to (P). Our
goal is to show that u � 0. Being {u

n
} a (PS)

c
 sequence, for n sufficiently large we

are able to write

� � 1
0 ,

2 n n n

c
I u u

p
� � � � = � � 1 1

0 , ,n n n n nu w u w u
p p

�� � �

� � � � �� � � �1

1IR

1
,

N

p q

n n n np q

C
u x f x u x dx u u

p p
�

�
� �� (26)

so we infer that {u
n
} doesn’t go to 0 in Lp(IRN) or in Lq+1(IRN). Due to Theorem 2.6

u
n
 � u both in Lp(IRN) and in Lq+1(IRN), so it is immediately seen that u > 0 a.e.

Remark 4.1: The solution u found throw previous theorem satisfies the following
differential inclusion:

� � � �� � ��� � �� �
2

( )  , ( ) ,  , ( ) a.e.
p

p u b u u f x u x f x u x

and hence the result can be seen as a generalization of Theorem 2 in [12].

Theorem 4.2: Assume (3), (4) and (5)–(7) hold. Suppose furthermore that

� � � �

1
1

1 1

1

1 1

4 2

p q
r p

q r

t r

q r
h

p cc pC cc

� �
� �

� ��
�

� �� �
� � �

� �� �� �

whenever q + 1 – p � 0. Then (P) has a solution which is positive a.e.
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Theorem 4.3: Assume (1)–(3) hold. Then (P�) has a solution which is non
negative a.e.

Theorem 4.4: Assume (3), (4) hold, in add to

1
1

1 1
1

1 1
4 2

p q
r p

q r
t r

q r
h

pc pCc

� �
� �

� ��
�

� �� �
� � �

� �

whenever q + 1 – p � 0. Then (P�) has a solution which is non negative a.e.

Corollary 4.1: Assume (3), (4) hold, with C = 0 in add to

� �
��

�
� 1

1

1
,

2
p q

q
t

q
h s

pc

for some s > 0, whenever q + 1 – p � 0. Then (P�) has a solution which is non
negative a.e.

Proof: Let u � 0 be the nonnegative solution to (P�). Then

0
2
c

� � � �1

1
,n n nI u u

p
� �

= � � 1
0 ,n n nu w u

p
�� �

� � � 1

IR

1 1
,

N

q
n n nw u h x u dx

p p
�� � (27)

so passing to the limit we infer that

� � 11

IR
0 ,

2 N

qq

t

hc
h x u dx u

p
�� �� � ��

and hence u � 0.
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