International Journal of Combinatorial GraphTheory and Applications Vol. 6, *No.* 1, (January-June, 2021)

Reviewed by: Kinkar Chandra Das

Received: 10th July 2021 Revised: 12th October 2021

Accepted: 15th November 2021

INCOMING LOCAL EXPONENT FOR A TWO-CYCLE BICOLOUR HAMILTONIAN DIGRAPH WITH A DIFFERENCE OF 4n + 1

YOGO DWI PRASETYO, SRI WAHYUNI, YENI SUSANTI, AND DIAH JUNIA EKSI PALUPI

ABSTRACT. A bicolour digraph is a directed graph with arcs in two colours, red and black. Let m and h be nonnegative integers representing the number of red arcs and black arcs, respectively. The incoming local exponent of a vertex v_x on a bicolour digraph is the smallest positive integer m + h over all pairs of nonnegative integers (m, h) such that for every vertex in v_g there is a walk from v_g to v_x consisting of m red arcs and h black arcs. We discuss incoming local exponents for a Hamiltonian bicolour digraph with two cycles of lengths n and 5n + 1. We also present the primitivity of this digraph, as well as a formula for the incoming local exponents at its vertices.

1. Introduction

A digraph D is defined as a pair of sets (V, A), wherein V is a non-empty set of vertices, and A is a set of arcs connecting a pair of vertices. A bicolour digraph $D^{(2)}$ is presented in two colours, in this case, red and black. Let m and h be nonnegative integers representing the number of red and black arcs, respectively. A walk from a vertex v_f to a vertex v_g where there are m red arcs and h black arcs is called an (m, h)-walk and is denoted by $v_f \xrightarrow{(m,h)} v_g$. For a walk Z in $D^{(2)}$, the number of red arcs in Z is denoted by s(Z), and the number of black arcs in Zis denoted by t(Z). The length of walk Z is $\ell(Z) = s(Z) + t(Z)$. The composition of W is presented in the form of a column matrix $\begin{bmatrix} s(Z) \\ t(Z) \end{bmatrix}$. The distance from vertex v_f to vertex v_g , denoted by $\delta(v_f, v_g)$, is the shortest length of $v_f \to v_g$ path. If there are nonnegative integers m and h such that for every pair of vertices v_f and v_g in $D^{(2)}$, we have a $v_f \xrightarrow{(m,h)}{\longrightarrow} v_g$ walk and a $v_g \xrightarrow{(m,h)}{\longrightarrow} v_f$ walk, then the bicolour digraph is primitive [1]. The exponent of $D^{(2)}$ is the smallest positive integer m + h over all pairs of nonnegative integers m and h [10]. The incoming local exponent of a vertex v_x , denoted by expin $(v_x, D^{(2)})$, is the smallest positive

²⁰⁰⁰ Mathematics Subject Classification. 05C15; 05C20.

Key words and phrases. primitive digraph, bicolour digraph, incoming local exponent.

^{*} This research is supported by a 2021 Doctoral Dissertation Research Grant from the Deputy for Strengthening Research and Development, Ministry of Research and Technology / Indonesian National Innovation Agency under contract number 2278/UN1/DITLIT/DIT-LIT/PT/2021.

integer $m_x + h_x$ over all pairs of nonnegative integers (m_x, h_x) such that for every vertex v_g in $D^{(2)}$, there is a $v_g \xrightarrow{(m_x, h_x)} v_x$ walk [12]. Research on the exponents of bicolour digraphs, especially those for digraphs

Research on the exponents of bicolour digraphs, especially those for digraphs having two cycles with different lengths, is divided into two main areas, namely, research involving a difference some natural number j, and difference (q-1)n+1, for $q \ge 2$, with q also a natural number. The first type of research has been extensive for j = 1 and includes work done by Gao and Shao [2], Suwilo and Shader [14], Huang and Liu [3], Suwilo [12], Suwilo [13], and Mardiningsih et al. [7]. The difference j = 2 has been investigated by Syahmarani and Suwilo [16] and Suwilo and Syafrianty [15]. Mardiningsih et al. [8] considered j = 3. The second type of research, when the difference between two cycles is (q-1)n+1, for q = 2, has been conducted by Luo [4] and Sumardi and Suwilo [11]. Luo [5] and Prasetyo et al. [9] investigated the exponents for q = 3, while Luo [6] examined them for q = 4.

We discuss the incoming local exponents for a Hamiltonian bicolour digraph for q = 5. The lengths of the two cycles are n and 5n + 1, respectively, for n common vertices. In section 2, we present the primitivity of the bicolour digraph. In section 3, it is discussed the results of previous studies that are useful for determining the bounds of incoming local exponents in bicolour digraphs. Sections 4 and 5 present the results and conclusions, respectively.

2. Primitivity

Suppose that $D^{(2)}$ is a bicolour digraph and $Q = \{Q_1, Q_2, \ldots, Q_r\}$ is the set of all cycles in $D^{(2)}$. A cycle matrix M in a bicolour digraph $D^{(2)}$ is a 2 x rmatrix such that the *i*th column, for $i = 1, 2, \ldots, r$, is the composition of the *i*th cycle. The form of the cycle matrix is $M = \begin{bmatrix} s(Q_1) & s(Q_2) & \ldots & s(Q_r) \\ t(Q_1) & t(Q_2) & \ldots & t(Q_r) \end{bmatrix}$. If the rank of the cycle matrix M is 1, the content of M is defined to be 0; otherwise, the content of M is the greatest common divisor of the determinants of all 2 x 2 submatrices of M. Fornasini and Valcher [1] state that a bicolour digraph is primitive if and only if the content of M is 1.

Corollary 2.1. Let $D^{(2)}$ be a strongly connected bicolour digraph with two cycles of length n and 5n + 1. If $D^{(2)}$ is primitive, then the cycle matrix $M = \begin{bmatrix} 1 & 5 \\ n-1 & 5n-4 \end{bmatrix}$ or $M = \begin{bmatrix} n-1 & 5n-4 \\ 1 & 5 \end{bmatrix}$.

Proof. The cycle matrix form of a bicolour digraph $D^{(2)}$ with two cycles is $M = \begin{bmatrix} s_1 & s_2 \\ n & 5n+1 \end{bmatrix}$ for some $0 \le s_1 \le n$ and $0 \le s_2 \le 5n+1$. Since $D^{(2)}$ is primitive, the determinant of M is ± 1 . If det (M) = 1, then $(5s_1 - s_2) n + s_1 = 1$. Since $0 \le s_2 \le 5n+1$, we have $5s_1 - s_2 = 0$. Hence, $s_1 = 1$, and $s_2 = 5$. So, $M = \begin{bmatrix} 1 & 5 \\ n-1 & 5n-4 \end{bmatrix}$. If det (M) = -1, then $(s_2 - 5s_1) n - s_1 = 1$. Since $0 \le s_2 \le 5n+1$, we have $s_2 - 5s_1 = 1$. Consequently, $s_1 = n-1$, and $s_2 = 5n-4$. Thus, $M = \begin{bmatrix} n-1 & 5n-4 \\ 1 & 5 \end{bmatrix}$.

Changing all arc colours from red to black and vice versa does not change an incoming local exponent. Without loss of generality, we assume that the cycle matrix of $D^{(2)}$ is $M = \begin{bmatrix} 1 & 5 \\ n-1 & 5n-4 \end{bmatrix}$. Hence, $D^{(2)}$ has five or six red arcs.

3. Bounds for the Incoming Local Exponents of Bicolour Digraphs

We start with some results that will be useful in obtaining the upper and lower bounds of incoming local exponents.

Proposition 3.1. [12] Given a two-cycle bicolour digraph $D^{(2)}$ and any vertex v_x positioned on both cycles in $D^{(2)}$, if for some nonnegative integers m and h, there is a path P_{v_y,v_x} from v_y to v_x such that the system

$$M\mathbf{u} + \left[\begin{array}{c} s(P_{v_y,v_x})\\ t(P_{v_y,v_x}) \end{array}\right] = \left[\begin{array}{c} m\\ h \end{array}\right]$$

has a nonnegative integer solution, then $\exp(v_x, D^{(2)}) \le m + h$.

Lemma 3.2. [12] Given a primitive two-cycle bicolour digraph $D^{(2)}$ and any vertex v_y on $D^{(2)}$ with the incoming local exponent $\exp(v_y, D^{(2)})$, then for every $x = 1, 2, \ldots, 5n + 1$, it follows that $\exp(v_x, D^{(2)}) \leq \exp(v_y, D^{(2)}) + \delta(v_y, v_x)$.

Lemma 3.3. [7] Given a primitive bicolour digraph $D^{(2)}$ with two cycles, namely, Q_1 and Q_2 , with cycle matrix $M = \begin{bmatrix} s(Q_1) & s(Q_2) \\ t(Q_1) & t(Q_2) \end{bmatrix}$ and that $\det(M) = 1$, if $\exp(v_x, D^{(2)})$ is generated via the (m_x, h_x) -walk, then

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} t(Q_2)s(P_{v_y,v_x}) - s(Q_2)t(P_{v_y,v_x}) \\ s(Q_1)t(P_{v_w,v_x}) - t(Q_1)s(P_{v_w,v_x}) \end{bmatrix}$$

for some paths P_{v_y,v_x} and P_{v_w,v_x} .

4. Results

This paper discusses the incoming local exponents in a two-cycle Hamiltonian bicolour digraph with cycle length difference 4n + 1. The first cycle has length n, and the second cycle has length 5n + 1, while the number of common vertices is n. The first cycle is $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_1$, which is denoted by Q_1 . The second cycle is $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_{n+1} \cdots \rightarrow v_{5n} \rightarrow v_{5n+1}$, which is represented by Q_2 . Based on Corollary 2.1, the primitive bicolour digraph results in five or six red arcs.

Suppose the five red arcs in $D^{(2)}$ are $v_a \to v_{a+1}$, $v_b \to v_{b+1}$, $v_c \to v_{c+1}$, $v_d \to v_{d+1}$, and $v_e \to v_{e+1}$ for $1 \le a \le n-1$ and $n \le b < c < d < e \le 5n+1$. Let the six red arcs in $D^{(2)}$ be $v_n \to v_1$, $v_a \to v_{a+1}$, $v_b \to v_{b+1}$, $v_c \to v_{c+1}$, $v_d \to v_{d+1}$, and $v_e \to v_{e+1}$ for $n \le a < b < c < d < e \le 5n+1$. The distance from vertex v_{a+1} to vertex v_1 in Q_1 is denoted by $\delta_{1,1} = \delta(v_{a+1}, v_1)$, whereas the distance from vertex v_{a+1} to vertex v_1 in Q_2 is denoted by $\delta_{1,2} = \delta(v_{a+1}, v_1)$. Let δ_2 , δ_3 , δ_4 , and δ_5 represent the distance from vertex v_{b+1} to vertex v_1 , the distance from vertex v_{c+1} to vertex v_1 , the distance from vertex v_{d+1} to vertex v_1 , and the distance from vertex v_{e+1} to vertex v_1 , respectively. **Theorem 4.1.** Given $D^{(2)}$, a two-cycle primitive bicolour digraph with cycle lengths of n and 5n + 1, if $D^{(2)}$ has four or five consecutive red arcs in Q_2 , then for every x = 1, 2, ..., 5n + 1, $\exp(v_x, D^{(2)}) =$

$$\begin{cases} 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x), \text{ for } \delta_{1,2} - \delta_2 \le n\\ 20n^2 - 16n + \delta_5 + \delta(v_1, v_x), \text{ for } n < \delta_{1,2} - \delta_2 < 4n - 1\\ 20n^2 - 16n + 5n(\delta_{1,1} - \delta_5) + \delta_{1,1} + \delta(v_1, v_x), \text{ for } \delta_{1,2} - \delta_2 \ge 4n - 1. \end{cases}$$

Proof. Suppose the expin $(v_x, D^{(2)})$ value for each x = 1, 2, ..., 5n + 1 is generated from the (m_x, h_x) -walk. The proof of Theorem 4.1 is presented in the following three cases.

Case 1. (for
$$\delta_{1,2} - \delta_2 \leq n$$
)

First, we need to show that $\exp(v_x, D^{(2)}) \geq 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$. Choose paths P_{v_a, v_x} and P_{v_{e+1}, v_x} and define $k_1 = t(Q_2)s(P_{v_a, v_x}) - s(Q_2)t(P_{v_a, v_x})$ and $k_2 = s(Q_1)t(P_{v_{e+1}, v_x}) - t(Q_1)s(P_{v_{e+1}, v_x})$. We consider six subcases.

The vertex v_x is positioned on path $v_1 \rightarrow v_a$. Using path P_{v_a,v_x} , we get path $(5, \delta_{1,2} - 4 + \delta(v_1, v_x))$, resulting in $k_1 = 25n - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n - 5(\delta_{1,2} - \delta_5) \\ 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 25n + 5\delta_{1,2} - 4\delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,
$$\exp(v_x, D^{(2)}) \ge 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$$
(4.1)

for every vertex v_x positioned on the path $v_1 \rightarrow v_a$.

The vertex v_x is positioned on path $v_{a+1} \rightarrow v_b$. Using path P_{v_a,v_x} , we get path $(1, \delta_{1,2} - 5n - 1 + \delta(v_1, v_x))$, thus arriving at $k_1 = 30n + 1 - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(1, \delta_5 - 1 + \delta(v_1, v_x))$, leaving us with $k_2 = \delta_5 - n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n+1-5(\delta_{1,2}-\delta_5) \\ 25n^2+5n(\delta_5-\delta_{1,2})-25n-1+5\delta_{1,2}-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$

expin $(v_x, D^{(2)}) \ge 25n^2+5n(\delta_5-\delta_{1,2})+\delta_5+\delta(v_1,v_x)$
(4.2)

Hence,

for every vertex v_x positioned on the path $v_{a+1} \to v_b$.

The vertex v_x is positioned on path $v_{b+1} \rightarrow v_c$. Using path P_{v_a,v_x} , we get path $(2, \delta_{1,2} - 5n - 2 + \delta(v_1, v_x))$, resulting in $k_1 = 35n + 2 - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(2, \delta_5 - 2 + \delta(v_1, v_x))$, meaning that $k_2 = \delta_5 - 2n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n + 2 - 5(\delta_{1,2} - \delta_5) \\ 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 25n - 2 + 5\delta_{1,2} - 4\delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$
ce,
$$\exp(v_x, D^{(2)}) \ge 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x) \quad (4.3)$$

Hence,

for every vertex v_x positioned on the path $v_{b+1} \rightarrow v_c$.

The vertex v_x is positioned on path $v_{c+1} \rightarrow v_d$. Using path P_{v_a,v_x} , we get path $(3, \delta_{1,2} - 5n - 3 + \delta(v_1, v_x))$, leading to $k_1 = 40n + 3 - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(3, \delta_5 - 3 + \delta(v_1, v_x))$, thus arriving at $k_2 = \delta_5 - 3n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n+3-5(\delta_{1,2}-\delta_5) \\ 25n^2+5n(\delta_5-\delta_{1,2})-25n-3+5\delta_{1,2}-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$

Hence,

frence, $\exp(v_x, D^{(2)}) \ge 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ (4.4) for every vertex v_x positioned on the path $v_{c+1} \to v_d$.

The vertex v_x is positioned on path $v_{d+1} \rightarrow v_e$. Using path P_{v_a,v_x} , we get path $(4, \delta_{1,2} - 5n - 4 + \delta(v_1, v_x))$, meaning that $k_1 = 45n + 4 - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(4, \delta_5 - 4 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_5 - 4n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n+4-5(\delta_{1,2}-\delta_5) \\ 25n^2+5n(\delta_5-\delta_{1,2})-25n-4+5\delta_{1,2}-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$
ce,
$$\exp(v_x, D^{(2)}) \ge 25n^2+5n(\delta_5-\delta_{1,2})+\delta_5+\delta(v_1,v_x)$$
(4.5)

Hence,

for every vertex v_x positioned on the path $v_{d+1} \rightarrow v_e$.

The vertex v_x is positioned on path $v_{e+1} \rightarrow v_{5n+1}$. Using path P_{v_a,v_x} , we get path $(5, \delta_{1,2} - 5n - 5 + \delta(v_1, v_x))$, thus arriving at $k_1 = 50n + 5 - 5(\delta_{1,2} + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 - 5n - 1 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 25n - 5(\delta_{1,2} - \delta_5) \\ 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 30n - 1 + 5\delta_{1,2} - 4\delta_5 + \delta(v_1, v_x) \end{bmatrix}$$

Let $p_1 = 25n - 5(\delta_{1,2} - \delta_5)$ and $p_2 = 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 30n - 1 + 5\delta_{1,2} - 4\delta_5 + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{e+1} to v_x . Note that path P_{v_{e+1}, v_x} is $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{e+1}, v_x}) \\ t(P_{v_{e+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ leads to $u_1 = 25n - 5\delta_{1,2} + 5\delta_5$ and $u_2 = 0$. Because the path P_{v_{e+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{e+1} to v_x . Therefore, $\exp(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{e+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + s(Q_2) + t(Q_2)$$

= $25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ (4.6)

for every vertex v_x positioned on the path $v_{e+1} \rightarrow v_{5n+1}$.

From (4.1), (4.2), (4.3), (4.4), (4.5), and (4.6), we conclude that $\exp(v_x, D^{(2)}) \ge 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Next, we will show that $\exp(v_x, D^{(2)}) \le 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ for every x = 1, 2, ..., 5n + 1. First, we will show that $\exp(v_1, D^{(2)}) = 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5$ and then utilize Lemma 3.2 to ensure that $\exp(v_x, D^{(2)}) \le 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

From (4.1), we have $\exp((v_1, D^{(2)}) \ge 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5$. Next, it is necessary to prove that $\exp((v_1, D^{(2)})) \le 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5$ for every v_y and that for y = 1, 2, ..., 5n + 1, the system

$$M\mathbf{u} + \begin{bmatrix} s(P_{v_y,v_1}) \\ t(P_{v_y,v_1}) \end{bmatrix}$$
$$= \begin{bmatrix} 25n - 5(\delta_{1,2} - \delta_5) \\ 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 25n + 5\delta_{1,2} - 4\delta_5 \end{bmatrix}$$
(4.7)

has a nonnegative integer solution for the path P_{v_y,v_1} .

The solution of system (4.7) is $u_1 = 25n - 5\delta_{1,2} - (5n - 4)s(P_{v_y,v_1}) + 5t(P_{v_y,v_1})$ and $u_2 = \delta_5 - (1 - n)s(P_{v_y,d_1}) - t(P_{v_y,v_1})$. If v_y is positioned on the $v_1 \to v_a$ path, then there is a $(5, 5n - 4 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 25n - 5(\delta_{1,2} + \delta(v_1, v_y)) \ge 0$ since $\delta_{1,2} + \delta(v_1, v_y) \le 5n$ for $n \geq 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 1 \geq 7$ since $\delta_5 + \delta(v_1, v_y) \geq 2n + 1$ for $n \geq 3$. If v_y is positioned on the $v_{a+1} \rightarrow v_b$ path, then there is a $(4, 5n - 3 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 30n + 1 - 5(\delta_{1,2} + \delta(v_1, v_y)) \ge 11$ since $\delta_{1,2} + \delta(v_1, v_y) \le 5n + 1$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - n - 1 \ge 4$ since $\delta_5 + \delta(v_1, v_y) \ge 2n + 2$ for $n \ge 3$. If v_y is positioned on the $v_{b+1} \to v_c$ path, then there is a $(3, 5n - 2 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 35n + 2 - 5(\delta_{1,2} + \delta(v_1, v_y)) \ge 12$ since $\delta_{1,2} + \delta(v_1, v_y) \le 6n + 1$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 2n - 1 \ge 6$ since $\delta_5 + \delta(v_1, v_y) \ge 4n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{c+1} \rightarrow v_d$ path, then there is a $(2, 5n-1-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 40n + 3 - 5(\delta_{1,2} + \delta(v_1, v_y)) \ge 23$ since $\delta_{1,2} + \delta(v_1, v_y) \le 6n + 2$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 3n - 1 \ge 4$ since $\delta_5 + \delta(v_1, v_y) \ge 5n - 1$ for $n \ge 3$. If v_y is positioned on the $v_{d+1} \to v_e$ path, then there is a $(1, 5n - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 45n + 4 - 5(\delta_{1,2} + \delta(v_1, v_y)) \ge 14$ since $\delta_{1,2} + \delta(v_1, v_y) \le 7n$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 4n - 1 \ge 2$ since $\delta_5 + \delta(v_1, v_y) \ge 5n$ for $n \ge 3$. If v_y is positioned on the $v_{e+1} \rightarrow v_{5n+1}$ path, then there is a $(0, 5n+1-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 50n + 5 - 5(\delta_{1,2} + \delta(v_1, v_y)) \geq 5$ since $\delta_{1,2} + \delta(v_1, v_y) \le 10n$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 5n - 1 \ge 0$ since $\delta_5 + \delta(v_1, v_y) \ge 5n + 1 \text{ for } n \ge 3.$

Therefore, for every y = 1, 2, ..., 5n + 1, the system (4.7) has a nonnegative integer solution. Proposition 3.1 then ensures that for every y = 1, 2, ..., 5n + 1, there is a $v_y \stackrel{(m,h)}{\longrightarrow} v_1$ walk with $m = 25n - 5(\delta_{1,2} - \delta_5)$ and $h = 25n^2 + 5n(\delta_5 - \delta_{1,2}) - 25n + 5\delta_{1,2} - 4\delta_5$. Consequently, $\exp(v_1, D^{(2)}) \le 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5$. So, expin $(v_1, D^{(2)}) = 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5$. Using Lemma 3.2, we conclude that expin $(v_x, D^{(2)}) \le 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Case 2. (for $n < \delta_{1,2} - \delta_2 < 4n - 1$)

First, we need to show that $\exp((v_x, D^{(2)})) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$. Choose paths P_{v_b,v_x} and P_{v_{e+1},v_x} and define $k_1 = t(Q_2)s(P_{v_b,v_x}) - s(Q_2)t(P_{v_b,v_x})$ and $k_2 = s(Q_1)t(P_{v_{e+1},v_x}) - t(Q_1)s(P_{v_{e+1},v_x})$. We consider six sub-cases.

The vertex v_x is positioned on path $v_1 \rightarrow v_a$. Using path P_{v_b,v_x} , we get path $(4, \delta_5 + \delta(v_1, v_x))$, thus arriving at $k_1 = 20n - 16 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_5 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 16 \\ 20n^2 - 36n + 16 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$
$$\exp(v_x, D^{(2)}) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$$
(4.8)

Hence,

for every vertex v_x positioned on the path $v_1 \rightarrow v_a$.

The vertex v_x is positioned on path $v_{a+1} \rightarrow v_b$. Using path P_{v_b,v_x} , we get path $(5, \delta_5 - 1 + \delta(v_1, v_x))$, leading to $k_1 = 25n - 15 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(1, \delta_5 - 1 + \delta(v_1, v_x))$, arriving at $k_2 = \delta_5 - n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 15 \\ 20n^2 - 36n + 15 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$
Hence,
$$\exp(v_x, D^{(2)}) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$$
(4.9)

for every vertex v_x positioned on the path $v_{a+1} \rightarrow v_b$.

The vertex v_x is positioned on path $v_{b+1} \rightarrow v_c$. Using path P_{v_b,v_x} , we get path $(1, \delta_5 - 5n + 2 + \delta(v_1, v_x))$, leading to $k_1 = 30n - 14 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(2, \delta_5 - 2 + \delta(v_1, v_x))$, thus ending up with $k_2 =$ $\delta_5 - 2n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 14 \\ 20n^2 - 36n + 14 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$
Hence,
$$\exp(v_x, D^{(2)}) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x) \tag{4.10}$$

for every vertex v_x positioned on the path $v_{b+1} \rightarrow v_c$.

The vertex v_x is positioned on path $v_{c+1} \rightarrow v_d$. Using path P_{v_b,v_x} , we get path $(2, \delta_5 - 5n + 1 + \delta(v_1, v_x))$, thus arriving at $k_1 = 35n - 13 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(3, \delta_5 - 3 + \delta(v_1, v_x))$, ending up with $k_2 =$ $\delta_5 - 3n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 13 \\ 20n^2 - 36n + 13 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

$$\exp(v_x, D^{(2)}) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$$
(4.11)

for every vertex v_x positioned on the path $v_{c+1} \rightarrow v_d$.

The vertex v_x is positioned on path $v_{d+1} \rightarrow v_e$. Using path P_{v_b,v_x} , we get path $(3, \delta_5 - 5n + \delta(v_1, v_x))$, resulting in $k_1 = 40n - 12 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(4, \delta_5 - 4 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 - 4n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 12 \\ 20n^2 - 36n + 12 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}$$

Hence,

$$\exp((v_x, D^{(2)})) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$$
(4.12)

for every vertex v_x positioned on the path $v_{d+1} \rightarrow v_e$.

The vertex v_x is positioned on path $v_{e+1} \rightarrow v_{5n+1}$. Using path P_{v_b,v_x} , we get path $(4, \delta_5 - 5n - 1 + \delta(v_1, v_x))$, arriving at $k_1 = 45n - 11 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 - 5n - 1 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 16 \\ 20n^2 - 41n + 15 + \delta_5 + \delta(v_1, v_x) \end{bmatrix}$$

Let $p_1 = 20n - 16$ and $p_2 = 20n^2 - 41n + 15 + \delta_5 + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{e+1} to v_x . Note that path P_{v_{e+1}, v_x} is $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{e+1}, v_x}) \\ t(P_{v_{e+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ results in $u_1 = 20n - 16$ and $u_2 = 0$. Because the path P_{v_{e+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{e+1} to v_x . Therefore, $\exp(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{e+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + s(Q_2) + t(Q_2)$$

= $20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$ (4.13)

for every vertex v_x positioned on the path $v_{e+1} \rightarrow v_{5n+1}$.

From (4.8), (4.9), (4.10), (4.11), (4.12), and (4.13), we conclude that expin $(v_x, D^{(2)}) \ge 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Next, we will show that $\exp((v_x, D^{(2)})) \le 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1. First, we will show that $\exp((v_1, D^{(2)})) = 20n^2 - 16n + \delta_5$ and then utilize Lemma 3.2 to ensure that $\exp((v_x, D^{(2)})) \le 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

From (4.8), we have $\exp((v_1, D^{(2)}) \ge 20n^2 - 16n + \delta_5$. Next, it is necessary to prove that $\exp((v_1, D^{(2)}) \le 20n^2 - 16n + \delta_5$ for every v_y and that for y = 1, 2, ..., 5n + 1, the system

$$M\mathbf{u} + \begin{bmatrix} s(P_{v_y,v_1}) \\ t(P_{v_y,v_1}) \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 16 \\ 20n^2 - 36n + 16 + \delta_5 \end{bmatrix}$$
(4.14)

has a nonnegative integer solution for the path P_{v_y,v_1} .

The solution of system (4.14) is $u_1 = 20n - 16 - 5\delta_5 - (5n - 4)s(P_{v_y,v_1}) + 5t(P_{v_y,v_1})$ and $u_2 = \delta_5 - (1 - n)s(P_{v_y,d_1}) - t(P_{v_y,v_1})$. If v_y is positioned on the $v_1 \rightarrow v_a$ path, then there is a $(5, 5n - 4 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 20n - 16 - 5(\delta_5 + \delta(v_1, v_y)) \ge 4$ since $\delta_5 + \delta(v_1, v_y) \le 3n - 1$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 1 \ge 0$ since $\delta_5 + \delta(v_1, v_y) \ge n - 2$ for $n \ge 3$. If v_y is positioned on the $v_{a+1} \rightarrow v_b$ path, then there is a $(4, 5n - 3 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 25n - 15 - 5(\delta_5 + \delta(v_1, v_y)) \ge 0$ since $\delta_5 + \delta(v_1, v_y) \le 4n$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - n - 1 \ge 0$ since
$$\begin{split} &\delta_5 + \delta(v_1,v_y) \geq n+1 \text{ for } n \geq 3. \text{ If } v_y \text{ is positioned on the } v_{b+1} \to v_c \text{ path, then} \\ &\text{there is a } (3,5n-2-\delta(v_1,v_y))\text{-path from } v_y \text{ to } v_1. \text{ Using this path, we determine} \\ &\text{that } u_1 = 30n-14-5(\delta_5+\delta(v_1,v_y)) \geq 11 \text{ since } \delta_5+\delta(v_1,v_y) \leq 4n+1 \text{ for } n \geq 3 \\ &\text{and } u_2 = \delta_5+\delta(v_1,v_y)-2n-1 \geq 6 \text{ since } \delta_5+\delta(v_1,v_y) \geq 4n+1 \text{ for } n \geq 3. \text{ If } v_y \text{ is} \\ &\text{positioned on the } v_{c+1} \to v_d \text{ path, then there is a } (2,5n-1-\delta(v_1,v_y))\text{-path from} \\ &v_y \text{ to } v_1. \text{ Using this path, we determine that } u_1 = 35n-13-5(\delta_5+\delta(v_1,v_y)) \geq 22 \\ &\text{since } \delta_5+\delta(v_1,v_y) \leq 5n-1 \text{ for } n \geq 3 \text{ and } u_2 = \delta_5+\delta(v_1,v_y)-3n-1 \geq 4 \text{ since} \\ &\delta_5+\delta(v_1,v_y) \geq 5n-1 \text{ for } n \geq 3. \text{ If } v_y \text{ is positioned on the } v_{d+1} \to v_e \text{ path, then} \\ &\text{there is a } (1,5n-\delta(v_1,v_y))\text{-path from } v_y \text{ to } v_1. \text{ Using this path, we determine} \\ &\text{that } u_1 = 40n-12-5(\delta_5+\delta(v_1,v_y)) \geq 33 \text{ since } \delta_5+\delta(v_1,v_y) \leq 5n \text{ for } n \geq 3 \text{ and} \\ &u_2 = \delta_5+\delta(v_1,v_y)-4n-1 \geq 2 \text{ since } \delta_5+\delta(v_1,v_y) \geq 5n \text{ for } n \geq 3. \text{ If } v_y \text{ is positioned} \\ &\text{on the } v_{e+1} \to v_{5n+1} \text{ path, then there is a } (0,5n+1-\delta(v_1,v_y))\text{-path from } v_y \text{ to } v_1. \text{ Using this path, we determine } \\ &\text{that } u_1 = 45n-11-5(\delta_5+\delta(v_1,v_y)) \geq 9 \\ &\text{since } \delta_5+\delta(v_1,v_y) \leq 8n-1 \text{ for } n \geq 3 \text{ and } u_2 = \delta_5+\delta(v_1,v_y) -5n-1 \geq 0 \text{ since } \\ &\delta_5+\delta(v_1,v_y) \geq 5n+1 \text{ for } n \geq 3. \end{aligned}$$

Therefore, for every y = 1, 2, ..., 5n + 1, the system (4.14) has a nonnegative integer solution. Proposition 3.1 ensures that for every y = 1, 2, ..., 5n + 1, there is a $v_y \xrightarrow{(m,h)} v_1$ walk with m = 20n - 16 and $h = 20n^2 - 36n + 16 + \delta_5$. Consequently, $\exp(v_1, D^{(2)}) \le 20n^2 - 16n + \delta_5$. So, $\exp(v_1, D^{(2)}) = 20n^2 - 16n + \delta_5$. By Lemma 3.2, we conclude that $\exp(v_x, D^{(2)}) \le 20n^2 - 16n + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Case 3. (for $\delta_{1,2} - \delta_2 \ge 4n - 1$)

First, we need to show that $\exp(v_x, D^{(2)}) \ge 20n^2 - 16n + 5n(\delta_{1,1} - \delta_5) + \delta_{1,1} + \delta(v_1, v_x)$. Choose paths P_{v_b, v_x} and P_{v_{a+1}, v_x} and define $k_1 = t(Q_2)s(P_{v_b, v_x}) - s(Q_2)t(P_{v_b, v_x})$ and $k_2 = s(Q_1)t(P_{v_{a+1}, v_x}) - t(Q_1)s(P_{v_{a+1}, v_x})$. We consider six subcases.

The vertex v_x is positioned on path $v_1 \rightarrow v_a$. Using path P_{v_b,v_x} , we get path $(4, \delta_5 + \delta(v_1, v_x))$, resulting in $k_1 = 20n - 16 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} + \delta(v_1, v_x))$, arriving at $k_2 = \delta_{1,1} + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 16 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 36n + 16 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

 $\exp(v_x, D^{(2)}) \ge 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ (4.15)

for every vertex v_x positioned on the path $v_1 \rightarrow v_a$.

The vertex v_x is positioned on path $v_{a+1} \rightarrow v_b$. Using path P_{v_b,v_x} , we get path $(5, \delta_5 - 1 + \delta(v_1, v_x))$, ending up with $k_1 = 25n - 15 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - n + \delta(v_1, v_x))$, resulting in $k_2 = \delta_{1,1} - n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\left[\begin{array}{c} m_x \\ h_x \end{array}\right] \ge M \left[\begin{array}{c} k_1 \\ k_2 \end{array}\right]$$

Y. D. PRASETYO, S. WAHYUNI, Y. SUSANTI, AND D. J. E. PALUPI

$$= \left[\begin{array}{c} 20n - 15 - 5(d_5 - d_{11})\\ 20n^2 + 5n(d_{11} - d_5) - 36n + 15 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{array}\right].$$

Hence,

$$\exp(v_x, D^{(2)}) \ge 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$$
(4.16)

for every vertex v_x positioned on the path $v_{a+1} \to v_b$.

The vertex v_x is positioned on path $v_{b+1} \rightarrow v_c$. Using path P_{v_b,v_x} , we get path $(1, \delta_5 - 5n + 2 + \delta(v_1, v_x))$, leading to $k_1 = 30n - 14 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 2n - 7 + \delta(v_1, v_x))$, arriving at $k_2 = \delta_{1,1} - 2n - 7 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \\ \begin{bmatrix} 20n - 49 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 71n + 42 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Let $p_1 = 20n - 49 - 5(d_5 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_5) - 71n + 42 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that path P_{v_{a+1}, v_x} is $(0, \delta_{1,1} - 2n - 7 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{a+1}, v_x}) \\ t(P_{v_{a+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ leads to $u_1 = 20n - 49 - 5(d_5 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1} to v_x . Therefore, $expin(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{a+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + 7(s(Q_2) + t(Q_2))$$

= $20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ (4.17)

for every vertex v_x positioned on the path $v_{b+1} \rightarrow v_c$.

The vertex v_x is positioned on path $v_{c+1} \rightarrow v_d$. Using path P_{v_b,v_x} , we get path $(2, \delta_5 - 5n + 1 + \delta(v_1, v_x))$, arriving at $k_1 = 35n - 13 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 3n - 4 + \delta(v_1, v_x))$, leading to $k_2 = \delta_{1,1} - 3n - 4 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} =$$

$$\begin{bmatrix} 20n - 33 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 56n + 29 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Let $p_1 = 20n - 33 - 5(d_5 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_5) - 56n + 29 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that path P_{v_{a+1}, v_x} is $(0, \delta_{1,1} - 3n - 4 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{a+1}, v_x}) \\ t(P_{v_{a+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ gives us $u_1 = 20n - 33 - 5(d_5 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1} to v_x . Therefore, $\exp(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{a+1} to v_x

with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + 5(s(Q_2) + t(Q_2))$$

= $20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ (4.18)

for every vertex v_x positioned on the path $v_{c+1} \rightarrow v_d$.

The vertex v_x is positioned on path $v_{d+1} \rightarrow v_e$. Using path P_{v_b,v_x} , we get path $(3, \delta_5 - 5n + \delta(v_1, v_x))$, ending up with $k_1 = 40n - 12 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 4n - 2 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_{1,1} - 4n - 2 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} =$$

$$\begin{bmatrix} 20n - 22 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 46n + 20 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Let $p_1 = 20n - 22 - 5(d_5 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_5) - 46n + 20 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that path P_{v_{a+1}, v_x} is $(0, \delta_{1,1} - 4n - 2 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{a+1}, v_x}) \\ t(P_{v_{a+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ leads to $u_1 = 20n - 22 - 5(d_5 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1}

to v_x . Therefore, $\exp((v_x, D^{(2)}) > p_1 + p_2)$. The shortest walk from v_{a+1} to v_x . with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + 2(s(Q_2) + t(Q_2))$$

= $20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ (4.19)

for every vertex v_x positioned on the path $v_{d+1} \rightarrow v_e$.

The vertex v_x is positioned on path $v_{e+1} \rightarrow v_{5n+1}$. Using path P_{v_b,v_x} , we get path $(4, \delta_5 - 5n - 1 + \delta(v_1, v_x))$, arriving at $k_1 = 45n - 11 - 5(\delta_5 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 5n + \delta(v_1, v_x))$, resulting in $k_2 = \delta_{1,1} - 5n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 11 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 36n + 11 + 5\delta_5 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

 $\exp(v_x, D^{(2)}) \ge 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ (4.20)

for every vertex v_x positioned on the path $v_{e+1} \rightarrow v_{5n+1}$.

From (4.15), (4.16), (4.17), (4.18), (4.19), and (4.20), we conclude that expin $(v_x, D^{(2)}) \ge 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Next, we will show that $\exp((v_x, D^{(2)})) \le 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1. First, we will show that $\exp((v_1, D^{(2)})) = 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1}$ and then utilize Lemma 3.2 to ensure that $\exp((v_x, D^{(2)})) \le 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

From (4.15), we have $\exp((v_1, D^{(2)}) \ge 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1}$. Next, it is necessary to prove that $\exp((v_1, D^{(2)}) \le 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1}$ for every v_y and that for y = 1, 2, ..., 5n + 1, the system

$$M\mathbf{u} + \left[\begin{array}{c} s(P_{v_y,v_1}) \\ t(P_{v_y,v_1}) \end{array}\right]$$

$$= \begin{bmatrix} 20n - 16 - 5(d_5 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_5) - 36n + 16 + 5\delta_5 - 4d_{11} \end{bmatrix}$$
(4.21)

has a nonnegative integer solution for the path P_{v_y,v_1} .

The solution of system (4.21) is $u_1 = 20n - 16 - 5\delta_5 - (5n - 4)s(P_{v_y,v_1}) + 5t(P_{v_y,v_1})$ and $u_2 = \delta_{1,1} - (1-n)s(P_{v_y,d_1}) - t(P_{v_y,v_1})$. If v_y is positioned on the $v_1 \to v_a$ path, then there is a $(5, 5n - 4 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 20n - 16 - 5(\delta_5 + \delta(v_1, v_y)) \ge 39$ since $\delta_5 + \delta(v_1, v_y) \le n - 2$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 1 \ge 1$ since $\delta_{1,1} + \delta(v_1, v_y) \ge n - 1$ for $n \ge 3$. If v_y is positioned on the $v_{a+1} \rightarrow v_b$ path, then there is a $(4, 5n-3-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 25n - 15 - 5(\delta_5 + \delta(v_1, v_y)) \ge 0$ since $\delta_5 + \delta(v_1, v_y) \le 4n$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - n - 1 \ge 0$ since $\delta_{1,1} + \delta(v_1, v_y) \ge n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{b+1} \to v_c$ path, then there is a $(3, 5n - 2 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 30n - 14 - 5(\delta_5 + \delta(v_1, v_y)) \ge 11$ since $\delta_5 + \delta(v_1, v_y) \le 4n + 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 2n - 1 \ge 7$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 4n + 2$ for $n \ge 3$. If v_y is positioned on the $v_{c+1} \rightarrow v_d$ path, then there is a $(2, 5n-1-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 35n - 13 - 5(\delta_5 + \delta(v_1, v_y)) \ge 22$ since $\delta_5 + \delta(v_1, v_y) \le 5n - 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 3n - 1 \ge 5$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 5n$ for $n \ge 3$. If v_y is positioned on the $v_{d+1} \to v_e$ path, then there is a $(1, 5n - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 40n - 12 - 5(\delta_5 + \delta(v_1, v_y)) \ge 33$ since $\delta_5 + \delta(v_1, v_y) \le 5n$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 4n - 1 \ge 3$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 5n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{e+1} \rightarrow v_{5n+1}$ path, then there is a $(0, 5n+1-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 45n - 11 - 5(\delta_5 + \delta(v_1, v_y)) \ge 44$ since $\delta_5 + \delta(v_1, v_y) \le 5n + 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 5n - 1 \ge 1$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 5n + 2$ for $n \ge 3$.

Therefore, for every y = 1, 2, ..., 5n + 1, the system (4.21) has a nonnegative integer solution. Proposition 3.1 ensures that for every y = 1, 2, ..., 5n + 1, there is a $v_y \xrightarrow{(m,h)} v_1$ walk with $m = 20n - 16 - 5(d_5 - d_{11})$ and $h = 20n^2 + 5n(d_{11} - d_5) - 36n + 16 + 5\delta_5 - 4d_{11}$. Consequently, $\exp(v_1, D^{(2)}) \le 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1}$. By Lemma 3.2, we conclude that $\exp((v_x, D^{(2)})) \le 20n^2 + 5n(d_{11} - d_5) - 16n + \delta_{1,1} + \delta(v_1, v_x)$ for every x = 1, 2, ..., 5n + 1.

Theorem 4.2. Suppose that $D^{(2)}$ is a two-cycle primitive bicolour digraph with cycle lengths n and 5n + 1. If $D^{(2)}$ has four or five red arcs in alternating orders of one in Q_2 , then for every x = 1, 2, ..., 5n + 1, $\exp(v_x, D^{(2)}) =$

$$\begin{cases} 25n^2 + 5n(\delta_5 - \delta_{1,2}) + \delta_5 + \delta(v_1, v_x), \text{ for } \delta_{1,2} - \delta_2 \le n\\ 20n^2 - n + 5n(\delta_5 - \delta_2) + \delta_5 + \delta(v_1, v_x), \text{ for } n < \delta_{1,2} - \delta_2 < 3n\\ 20n^2 - n + 5n(\delta_{1,1} - \delta_2) + \delta_{1,1} + \delta(v_1, v_x), \text{ for } \delta_{1,2} - \delta_2 \ge 3n. \end{cases}$$

Proof. Suppose the expin $(v_x, D^{(2)})$ value for each x = 1, 2, ..., 5n + 1 is generated from a (m_x, h_x) -walk. The proof of Theorem 4.2 is presented in the following 3 cases.

Case 1. (for
$$\delta_{1,2} - \delta_2 \leq n$$
)

The formulas for Case 1 in Theorem 4.1 and Theorem 4.2 are the same. Therefore, the proof for Case 1 Theorem 4.1 works for Theorem 4.2.

Case 2. (for $n < \delta_{1,2} - \delta_2 < 3n$)

First, we need to show that $\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(\delta_5 - \delta_2) + \delta_5 + \delta(v_1, v_x)$. Choose paths P_{v_b, v_x} and P_{v_{e+1}, v_x} and define $k_1 = t(Q_2)s(P_{v_b, v_x}) - s(Q_2)t(P_{v_b, v_x})$ and $k_2 = s(Q_1)t(P_{v_{e+1}, v_x}) - t(Q_1)s(P_{v_{e+1}, v_x})$. We consider six subcases.

The vertex v_x is positioned on path $v_1 \to v_a$. Using path P_{v_b,v_x} , we get path $(4, \delta_2 - 3 + \delta(v_1, v_x))$, ending up with $k_1 = 20n - 1 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 1 - 5(d_2 - d_5) \\ 20n^2 - 21n + 1 + 5n(d_5 - d_2) + 5d_2 - 4\delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

$$\exp((v_x, D^{(2)})) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$$
(4.22)

for every vertex v_x positioned on the path $v_1 \rightarrow v_a$.

The vertex v_x is positioned on path $v_{a+1} \rightarrow v_b$. Using path P_{v_b,v_x} , we get path $(5, \delta_2 - 4 + \delta(v_1, v_x))$, arriving at $k_1 = 25n - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(1, \delta_5 - 1 + \delta(v_1, v_x))$, ending up with $k_2 = \delta_5 - n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 5(d_2 - d_5) \\ 20n^2 - 21n + 5n(d_5 - d_2) + 5d_2 - 4\delta_5 + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

$$\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$$
(4.23)

for every vertex v_x positioned on the path $v_{a+1} \rightarrow v_b$.

The vertex v_x is positioned on path $v_{b+1} \rightarrow v_c$. Using path P_{v_b,v_x} , we get path $(1, \delta_2 - 5n - 1 + \delta(v_1, v_x))$, arriving at $k_1 = 30n + 1 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(2, \delta_5 - 2 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_5 - 2n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n+1-5(d_2-d_5) \\ 20n^2-21n-1+5n(d_5-d_2)+5d_2-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$

Hence,

 $\exp((v_x, D^{(2)})) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ (4.24)

for every vertex v_x positioned on the path $v_{b+1} \rightarrow v_c$.

The vertex v_x is positioned on path $v_{c+1} \rightarrow v_d$. Using path P_{v_b,v_x} , we get path $(2, \delta_2 - 5n - 2 + \delta(v_1, v_x))$, leading to $k_1 = 35n + 2 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(3, \delta_5 - 3 + \delta(v_1, v_x))$, ending up with $k_2 = \delta_5 - 3n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$= \begin{bmatrix} 20n+2-5(d_2-d_5) \\ 20n^2-21n-2+5n(d_5-d_2)+5d_2-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$

$$\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_5-d_2) + \delta_5 + \delta(v_1,v_x)$$
(4.25)

Hence,

 $\exp((v_x, D^{(2)})) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$

for every vertex v_x positioned on the path $v_{c+1} \rightarrow v_d$.

The vertex v_x is positioned on path $v_{d+1} \rightarrow v_e$. Using path P_{v_b,v_x} , we get path $(3, \delta_2 - 5n - 3 + \delta(v_1, v_x))$, resulting in $k_1 = 40n + 3 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(4, \delta_5 - 4 + \delta(v_1, v_x))$, leading to $k_2 = \delta_5 - 4n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n+3-5(d_2-d_5) \\ 20n^2-21n-3+5n(d_5-d_2)+5d_2-4\delta_5+\delta(v_1,v_x) \end{bmatrix}.$$

Hence,

 $\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ (4.26)

for every vertex v_x positioned on the path $v_{d+1} \rightarrow v_e$.

The vertex v_x is positioned on path $v_{e+1} \rightarrow v_{5n+1}$. Using path P_{v_b,v_x} , we get path $(4, \delta_2 - 5n - 4 + \delta(v_1, v_x))$, arriving at $k_1 = 45n + 4 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{e+1},v_x} , we get path $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$, ending up with $k_2 = \delta_5 - 5n - 1 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} =$$
$$\begin{bmatrix} 20n - 1 - 5(d_2 - d_5) \\ 20n^2 + 5n(d_5 - d_2) - 26n + 5\delta_2 - 4d_5 + \delta(v_1, v_x) \end{bmatrix}$$

Let $p_1 = 20n - 1 - 5(d_2 - d_5)$ and $p_2 = 20n^2 + 5n(d_5 - d_2) - 26n + 5\delta_2 - 4d_5 + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{e+1} to v_x . Note that path P_{v_{e+1}, v_x} is $(0, \delta_5 - 5n - 1 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{e+1}, v_x}) \\ t(P_{v_{e+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ results in $u_1 = 20n - 1 - 5(d_2 - d_5)$ and $u_2 = 0$. Because the path P_{v_{e+1}, v_x}

lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{e+1} to v_x . Therefore, expin $(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{e+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + s(Q_2) + t(Q_2)$$

= $20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ (4.27)

for every vertex v_x positioned on the path $v_{e+1} \rightarrow v_{5n+1}$.

From (4.22), (4.23), (4.24), (4.25), (4.26), and (4.27), we conclude that expin $(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Next, we will show that $\exp((v_x, D^{(2)}) \le 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1. First, we will show that $\exp((v_1, D^{(2)})) = 20n^2 - n + 5n(d_5 - d_2) + \delta_5$ and then utilize Lemma 3.2 to ensure that $\exp((v_x, D^{(2)})) \le 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

From (4.22), we have $\exp((v_1, D^{(2)}) \ge 20n^2 - n + 5n(d_5 - d_2) + \delta_5$. Next, it is necessary to prove that $\exp((v_1, D^{(2)}) \le 20n^2 - n + 5n(d_5 - d_2) + \delta_5$ for every v_y and that for y = 1, 2, ..., 5n + 1, the system

$$M\mathbf{u} + \begin{bmatrix} s(P_{v_y,v_1}) \\ t(P_{v_y,v_1}) \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 1 - 5(d_2 - d_5) \\ 20n^2 - 21n + 1 + 5n(d_5 - d_2) + 5d_2 - 4\delta_5 \end{bmatrix}$$
(4.28)

has a nonnegative integer solution for the path P_{v_y,v_1} .

The solution of system (4.28) is $u_1 = 20n - 1 - 5\delta_2 - (5n - 4)s(P_{v_u,v_1}) + 5t(P_{v_u,v_1})$ and $u_2 = \delta_5 - (1-n)s(P_{v_y,d_1}) - t(P_{v_y,v_1})$. If v_y is positioned on the $v_1 \to v_a$ path, then there is a $(5, 5n - 4 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 20n - 1 - 5(\delta_2 + \delta(v_1, v_y)) \ge 4$ since $\delta_2 + \delta(v_1, v_y) \le 4n - 1$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 1 \ge 1$ since $\delta_5 + \delta(v_1, v_y) \ge n - 1$ for $n \ge 3$. If v_y is positioned on the $v_{a+1} \rightarrow v_b$ path, then there is a $(4, 5n - 3 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 25n - 5(\delta_2 + \delta(v_1, v_y)) \ge 0$ since $\delta_2 + \delta(v_1, v_y) \leq 5n$ for $n \geq 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - n - 1 \geq 0$ since $\delta_5 + \delta(v_1, v_y) \ge n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{b+1} \to v_c$ path, then there is a $(3, 5n - 2 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 30n + 1 - 5(\delta_2 + \delta(v_1, v_y)) \ge 6$ since $\delta_2 + \delta(v_1, v_y) \le 6n - 1$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 2n - 1 \ge 3$ since $\delta_5 + \delta(v_1, v_y) \ge 3n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{c+1} \rightarrow v_d$ path, then there is a $(2, 5n - 1 - \delta(v_1, v_u))$ -path from v_{y} to v_{1} . Using this path, we determine that $u_{1} = 35n + 2 - 5(\delta_{2} + \delta(v_{1}, v_{y})) \geq 12$ since $\delta_2 + \delta(v_1, v_y) \leq 6n + 1$ for $n \geq 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 3n - 1 \geq 2$ since $\delta_5 + \delta(v_1, v_y) \ge 4n$ for $n \ge 3$. If v_y is positioned on the $v_{d+1} \to v_e$ path, then there is a $(1, 5n - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 40n + 3 - 5(\delta_2 + \delta(v_1, v_y)) \ge 18$ since $\delta_2 + \delta(v_1, v_y) \le 7n$ for $n \ge 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 4n - 1 \ge 2$ since $\delta_5 + \delta(v_1, v_y) \ge 5n$ for $n \ge 3$. If v_y is positioned on the $v_{e+1} \rightarrow v_{5n+1}$ path, then there is a $(0, 5n + 1 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 45n + 4 - 5(\delta_2 + \delta(v_1, v_y)) \ge 9$ since $\delta_2 + \delta(v_1, v_y) \leq 9n - 1$ for $n \geq 3$ and $u_2 = \delta_5 + \delta(v_1, v_y) - 5n - 1 \geq 0$ since $\delta_5 + \delta(v_1, v_y) \ge 5n + 1 \text{ for } n \ge 3.$

Therefore, for every y = 1, 2, ..., 5n + 1, the system (4.28) has a nonnegative integer solution. Proposition 3.1 ensures that for every y = 1, 2, ..., 5n + 1, there is a $v_y \xrightarrow{(m,h)} v_1$ walk with $m = 20n - 1 - 5(d_2 - d_5)$ and $h = 20n^2 - 21n + 1 + 5n(d_5 - d_2) + 5d_2 - 4\delta_5$. Consequently, $\exp(v_1, D^{(2)}) \le 20n^2 - n + 5n(d_5 - d_2) + \delta_5$. So, $\exp(v_1, D^{(2)}) = 20n^2 - n + 5n(d_5 - d_2) + \delta_5$. By Lemma 3.2, we conclude that $\exp(v_x, D^{(2)}) \le 20n^2 - n + 5n(d_5 - d_2) + \delta_5 + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Case 3. (for $\delta_{1,2} - \delta_2 \ge 3n$)

First, we need to show that $\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(\delta_{1,1} - \delta_2) + \delta_{1,1} + \delta(v_1, v_x)$. Choose paths P_{v_b, v_x} and P_{v_{a+1}, v_x} and define $k_1 = t(Q_2)s(P_{v_b, v_x}) - s(Q_2)t(P_{v_b, v_x})$ and $k_2 = s(Q_1)t(P_{v_{a+1}, v_x}) - t(Q_1)s(P_{v_{a+1}, v_x})$. We consider six subcases.

The vertex v_x is positioned on path $v_1 \to v_a$. Using path P_{v_b,v_x} , we get path $(4, \delta_2 - 3 + \delta(v_1, v_x))$, arriving at $k_1 = 20n - 1 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} + \delta(v_1, v_x))$, leading to $k_2 = \delta_{1,1} + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$

$$= \begin{bmatrix} 20n - 1 - 5(d_2 - d_{11}) \\ 20n^2 - 21n + 1 + 5n(d_{11} - d_2) + 5d_2 - 4\delta_{1,1} + \delta(v_1, v_x) \end{bmatrix}.$$
(4.20)

Hence,

 $\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ (4.29)

for every vertex v_x positioned on the path $v_1 \rightarrow v_a$.

The vertex v_x is positioned on path $v_{a+1} \rightarrow v_b$. Using path P_{v_b,v_x} , we get path $(5, \delta_2 - 4 + \delta(v_1, v_x))$, ending up with $k_1 = 25n - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - n + \delta(v_1, v_x))$, leading to $k_2 = \delta_{1,1} - n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 5(d_2 - d_{11}) \\ 20n^2 - 21n + 5n(d_{11} - d_2) + 5d_2 - 4\delta_{1,1} + \delta(v_1, v_x) \end{bmatrix}.$$

Hence,

 $\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ (4.30)

for every vertex v_x positioned on the path $v_{a+1} \rightarrow v_b$.

The vertex v_x is positioned on path $v_{b+1} \rightarrow v_c$. Using path P_{v_b,v_x} , we get path $(1, \delta_2 - 5n - 1 + \delta(v_1, v_x))$, arriving at $k_1 = 30n + 1 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 2n - 3 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_{1,1} - 2n - 3 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 14 - 5(d_2 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_2) - 36n + 11 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

$$m = 20n - 14 - 5(d_2 - d_2) \text{ and } m = 20n^2 + 5n(d_2 - d_2) - 36n + 1$$

Let $p_1 = 20n - 14 - 5(d_2 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_2) - 36n + 11 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that

path P_{v_{a+1},v_x} is $(0, \delta_{1,1} - 2n - 3 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{a+1},v_x})\\ t(P_{v_{a+1},v_x}) \end{bmatrix} = \begin{bmatrix} p_1\\ p_2 \end{bmatrix}$ leads to $u_1 = 20n - 14 - 5(d_2 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1},v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1} to v_x . Therefore, expin $(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{a+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp((v_x, D^{(2)})) \ge p_1 + p_2 + 3(s(Q_2) + t(Q_2))$$

= $20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ (4.31)

for every vertex v_x positioned on the path $v_{b+1} \rightarrow v_c$.

The vertex v_x is positioned on path $v_{c+1} \rightarrow v_d$. Using path P_{v_b,v_x} , we get path $(2, \delta_2 - 5n - 2 + \delta(v_1, v_x))$, leading to $k_1 = 35n + 2 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 3n - 2 + \delta(v_1, v_x))$, resulting in $k_2 = \delta_{1,1} - 3n - 2 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 20n - 8 - 5(d_2 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_2) - 31n + 6 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Let $p_1 = 20n - 8 - 5(d_2 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_2) - 31n + 6 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that path P_{v_{a+1}, v_x} is $(0, \delta_{1,1} - 3n - 2 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \begin{bmatrix} s(P_{v_{a+1}, v_x}) \\ t(P_{v_{a+1}, v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ leads to $u_1 = 20n - 8 - 5(d_2 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1}, v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1} to v_x . Therefore, $expin(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{a+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + 2(s(Q_2) + t(Q_2))$$

= $20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ (4.32)

for every vertex v_x positioned on the path $v_{c+1} \rightarrow v_d$.

The vertex v_x is positioned on path $v_{d+1} \to v_e$. Using path P_{v_b,v_x} , we get path $(3, \delta_2 - 5n - 3 + \delta(v_1, v_x))$, ending up with $k_1 = 40n + 3 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 4n - 1 + \delta(v_1, v_x))$, arriving at $k_2 = \delta_{1,1} - 4n - 1 + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \\ \begin{bmatrix} 20n - 2 - 5(d_2 - d_{11}) \\ 20n^2 + 5n(d_{11} - d_2) - 26n + 1 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x) \end{bmatrix}.$$

Let $p_1 = 20n - 2 - 5(d_2 - d_{11})$ and $p_2 = 20n^2 + 5n(d_{11} - d_2) - 26n + 1 + 5\delta_2 - 4d_{11} + \delta(v_1, v_x)$. We consider the walk (p_1, p_2) from v_{a+1} to v_x . Note that path P_{v_{a+1},v_x} is $(0, \delta_{1,1} - 4n - 1 + \delta(v_1, v_x))$ and that solving the system $M\mathbf{u} + \delta(v_1, v_2)$

 $\begin{bmatrix} s(P_{v_{a+1},v_x}) \\ t(P_{v_{a+1},v_x}) \end{bmatrix} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ results in $u_1 = 20n - 2 - 5(d_2 - d_{11})$ and $u_2 = 0$. Because the path P_{v_{a+1},v_x} lies totally on cycle Q_2 , there is no (p_1, p_2) -walk from v_{a+1} to v_x . Therefore, expin $(v_x, D^{(2)}) > p_1 + p_2$. The shortest walk from v_{a+1} to v_x with minimal p_1 red arcs and minimal p_2 red arcs is a $(p_1 + s(Q_2), p_2 + t(Q_2))$ -walk. Since $s(Q_2) + t(Q_2) = 5n + 1$, we get

$$\exp(v_x, D^{(2)}) \ge p_1 + p_2 + s(Q_2) + t(Q_2)$$

= $20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ (4.33)

for every vertex v_x positioned on the path $v_{d+1} \rightarrow v_e$.

The vertex v_x is positioned on path $v_{e+1} \rightarrow v_{5n+1}$. Using path P_{v_b,v_x} , we get path $(4, \delta_2 - 5n - 4 + \delta(v_1, v_x))$, leading to $k_1 = 45n + 4 - 5(\delta_2 + \delta(v_1, v_x))$. Using path P_{v_{a+1},v_x} , we get path $(0, \delta_{1,1} - 5n + \delta(v_1, v_x))$, arriving at $k_2 = \delta_{1,1} - 5n + \delta(v_1, v_x)$. Utilizing Lemma 3.3, we get

$$\begin{bmatrix} m_x \\ h_x \end{bmatrix} \ge M \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 20n+4-5(d_2-d_{11}) \\ 20n^2-21n-4+5n(d_{11}-d_2)+5d_2-4\delta_{1,1}+\delta(v_1,v_x) \end{bmatrix}.$$

Hence,

$$\exp(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$$
(4.34)

for every vertex v_x positioned on the path $v_{e+1} \rightarrow v_{5n+1}$.

From (4.29), (4.30), (4.31), (4.32), (4.33), and (4.34), we conclude that expin $(v_x, D^{(2)}) \ge 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

Next, we will show that $\exp(v_x, D^{(2)}) \leq 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1. First, we will show that $\exp(v_1, D^{(2)}) = 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1}$ and then utilize Lemma 3.2 to ensure that $\exp(v_x, D^{(2)}) \leq 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ for x = 1, 2, ..., 5n + 1.

From (4.29), we have $\exp(v_1, D^{(2)}) \ge 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1}$. Next, it is necessary to prove that $\exp(v_1, D^{(2)}) \le 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1}$ for every v_y and that for y = 1, 2, ..., 5n + 1, the system

$$M\mathbf{u} + \begin{bmatrix} s(P_{v_y,v_1}) \\ t(P_{v_y,v_1}) \end{bmatrix}$$
$$= \begin{bmatrix} 20n - 1 - 5(d_2 - d_{11}) \\ 20n^2 - 21n + 1 + 5n(d_{11} - d_2) + 5d_2 - 4\delta_{1,1} \end{bmatrix}$$
(4.35)

has a nonnegative integer solution for the path P_{v_y,v_1} .

The solution of system (4.35) is $u_1 = 20n - 1 - 5\delta_2 - (5n - 4)s(P_{v_y,v_1}) + 5t(P_{v_y,v_1})$ and $u_2 = \delta_{1,1} - (1 - n)s(P_{v_y,d_1}) - t(P_{v_y,v_1})$. If v_y is positioned on the $v_1 \to v_a$ path, then there is a $(5, 5n - 4 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 20n - 1 - 5(\delta_2 + \delta(v_1, v_y)) \ge 24$ since $\delta_2 + \delta(v_1, v_y) \le 2n + 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 1 \ge 0$ since $\delta_{1,1} + \delta(v_1, v_y) \ge n - 2$ for $n \ge 3$. If v_y is positioned on the $v_{a+1} \to v_b$ path, then there is a $(4, 5n - 3 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 25n - 5(\delta_2 + \delta(v_1, v_y)) \ge 0$ since $\delta_2 + \delta(v_1, v_y) \le 5n$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - n - 1 \ge 0$ since $\delta_{1,1} + \delta(v_1, v_y) \ge n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{b+1} \to v_c$ path, then there is a $(3, 5n - 2 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 30n + 1 - 5(\delta_2 + \delta(v_1, v_y)) \ge 6$ since $\delta_2 + \delta(v_1, v_y) \le 6n - 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 2n - 1 \ge 4$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 4n - 1$ for $n \ge 3$. If v_y is positioned on the $v_{c+1} \rightarrow v_d$ path, then there is a $(2, 5n - 1 - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 35n + 2 - 5(\delta_2 + \delta(v_1, v_y)) \ge 12$ since $\delta_2 + \delta(v_1, v_y) \le 6n + 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 3n - 1 \ge 3$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 4n + 1$ for $n \ge 3$. If v_y is positioned on the $v_{d+1} \rightarrow v_e$ path, then there is a $(1, 5n - \delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 40n + 3 - 5(\delta_2 + \delta(v_1, v_y)) \ge 18$ since $\delta_2 + \delta(v_1, v_y) \le 7n$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 4n - 1 \ge 2$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 5n$ for $n \ge 3$. If v_y is positioned on the $v_{e+1} \rightarrow v_{5n+1}$ path, then there is a $(0, 5n+1-\delta(v_1, v_y))$ -path from v_y to v_1 . Using this path, we determine that $u_1 = 45n + 4 - 5(\delta_2 + \delta(v_1, v_y)) \ge 29$ since $\delta_2 + \delta(v_1, v_y) \le 7n + 1$ for $n \ge 3$ and $u_2 = \delta_{1,1} + \delta(v_1, v_y) - 5n - 1 \ge 1$ since $\delta_{1,1} + \delta(v_1, v_y) \ge 5n + 2$ for $n \ge 3$.

Therefore, for every y = 1, 2, ..., 5n + 1, the system (4.35) has a nonnegative integer solution. Proposition 3.1 ensures that for every y = 1, 2, ..., 5n + 1, there is $v_y \xrightarrow{(m,h)} v_1$ walk with $m = 20n - 1 - 5(d_2 - d_{11})$ and $h = 20n^2 - 21n + 1 + 5n(d_{11} - d_2) + 5d_2 - 4\delta_{1,1}$. Consequently, $\exp(v_1, D^{(2)}) \le 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1}$. So, $\exp(v_1, D^{(2)}) = 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1}$. By Lemma 3.2, we conclude that $\exp((v_x, D^{(2)}) \le 20n^2 - n + 5n(d_{11} - d_2) + \delta_{1,1} + \delta(v_1, v_x)$ for every x = 1, 2, ..., 5n + 1.

5. Conclusion

Incoming local exponents in a two-cycle Hamiltonian bicolour digraph with a cycle difference of 4n+1 can generally be obtained with the formula $\exp(v_x, D^{(2)}) \leq \exp((v_y, D^{(2)}) + \delta(v_y, v_x))$. Future research is expected to generalize incoming-local-exponent two-cycle Hamiltonian bicolour digraphs formulas for cycles with lengths n and kn + 1.

References

- Fornasini, E. and Valcher, M. E.: Primitivity of positive matrix pairs: algebraic characterization graph theoretic description and 2D systems interpretation, SIAM J. Matrix Anal. Appl. 19 (1998) 71–88.
- Gao, Y. and Shao, Y.: Exponents of two-colored digraphs with two cycles, *Linear Algebra Appl.* 407 (2005) 263–276.
- Huang, F. and Liu, B.: Exponents of a class of two-colored digraphs with two cycles, *Linear Algebra and its Applications* 429 (2008) 658–672.
- Luo, M.: The exponent set of class of two-colored digraphs with one common vertex, Advanced Materials Research 774–776 (2013) 1823–1826.
- Luo, M.: The primitive exponent of a class of special nonnegative matrix pairs, Advanced Materials Research 915-916 (2014) 1296-1299.
- Luo, M.: The primitivity and primitive exponents of a class of nonnegative matrix pairs, Advances in Computer Science Research 76 (2017) 148–151.
- Mardiningsih, Fathoni, M., and Suwilo, S.: Local exponents of two-coulored bi-cycles whose lengths differ by 1, *Malaysian Journal of Mathematical Sciences* 10 (2016) 205–218.
- Mardiningsih, Nasution, S. and Sitorus, S.: Local exponents of primitive two-colored digraph with cycles of length s and 2s-1, Journal of Physics : Conference Series 1116 (2018) 022022.

Y. D. PRASETYO, S. WAHYUNI, Y. SUSANTI, AND D. J. E. PALUPI

- Prasetyo, Y. D., Wahyuni, S., Susanti, Y., and Palupi, D. J. E.: Incoming local exponent for a two cycle bicolour Hamiltonian digraph with a difference of 2n+1, *IAENG International Journal of Applied Mathematics* 51 (2021) 526–537.
- Shader, B. L. and Suwilo, S.: Exponents of nonnegative matrix pairs, *Linear Algebra Appl.* 363 (2003) 275–293.
- 11. Sumardi, H. and Suwilo, S.: Local exponents of a class of two-colored digraphs consisting of two cycles with lengths 2s + 1 and s, in: AIP Conf. Proc. **1775**, (2016) 1–9.
- Suwilo, S.: Vertex exponent of two-colored extremal ministrong digraph, Global Journal of Technology and Optimization 2 (2011) 166–174.
- Suwilo, S.: Exponents of two-colored digraphs consisting of two cycles, in: AIP Conf. Proc. 1450, (2012) 297–304.
- Suwilo, S. and Shader, B. L.: On 2-exponents of ministrong 2-digraphs, in: Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications, (2006) 1–6, Universiti Sains Malaysia.
- Suwilo, S. and Syafrianty, A.: Vertex exponents of a class of two-colored digraphs with even number of vertices, *East-West J. of Mathematics* (2012) 316-330.
- Syahmarani A. and Suwilo, S.: Vertex exponents of a class of two-colored Hamiltonian digraphs, J. Indones. Math. Soc. 18 (2012) 1–19.

Yogo Dwi Prasetyo: PhD candidate of Mathematics Department, Universitas Gad-Jah Mada, Yogyakarta, 55281, Indonesia and Department of Information Systems, Institut Teknologi Telkom Purwokerto, Purwokerto, 53141, Indonesia

Email address: yogo.dwi.prasetyo@mail.ugm.ac.id

Sri Wahyuni: Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Email address: swahyuni@ugm.ac.id

Yeni Susanti: Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Email address: yeni_math@ugm.ac.id

Diah Junia Eksi Palupi: Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

Email address: diah_yunia@ugm.ac.id