
IMPACT OF SOME GRAPH OPERATIONS ON DOUBLE ROMAN

DOMINATION NUMBER
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Abstract. In this paper, we obtain bounds for the double Roman domination number,
γdR(G�H), in terms of γdR(G) and γdR(H), where G�H denotes the cartesian product of

G and H. The exact value of γdR(G2,n) is obtained, where G2,n = P2�Pn. We also find

the double Roman domination number of corona of G and H, γdR(G�H), for H � K1, and
obtain bounds for γdR(G � K1). The exact values of γdR(G � K1), where G is a path, a

cycle, a complete graph or a complete bipartite graph are also obtained.

1. Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). If there is no
ambiguity in the choice of G, then we write V (G) and E(G) as V and E respectively. Let

f : V → {0, 1, 2, 3} be a function defined on V (G). Let V fi = {v ∈ V (G) : f(v) = i}. (If there

is no ambiguity, V fi is written as Vi.) Then f is a double Roman dominating function (DRDF)
on G if it satisfies the following conditions.
(i) If v ∈ V0, then vertex v must have at least two neighbors in V2 or at least one neighbor in
V3.
(ii) If v ∈ V1, then vertex v must have at least one neighbor in V2 ∪ V3.

The weight of a DRDF f is the sum f(V ) =
∑
v∈V f(v). The double Roman domination

number, γdR(G), is the minimum among the weights of DRDFs on G, and a DRDF on G with
weight γdR(G) is called a γdR-function of G [5].

The study of double Roman domination was initiated by R. A. Beeler, T. W. Haynes and
S. T. Hedetniemi in [5]. They studied the relationship between double Roman domination and
Roman domination and the bounds on the double Roman domination number of a graph G in
terms of its domination number. They also determined a sharp upper bound on γdR(G) in terms
of the order of G and characterized the graphs attaining this bound. In [1], it is proved that
the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs.
Moreover, a characterization of graphs G with small γdR(G) is provided. In [8], G. Hao et al.
initiated the study of the double Roman domination of digraphs. L. Volkmann gave a sharp
lower bound on γdR(G) in [9]. In [3], it is proved that γdR(G) + 2 6 γdR(M(G)) 6 γdR(G) + 3,
where M(G) is the Mycielskian graph of G. It is also proved that there is no relation between
the double Roman domination number of a graph and its induced subgraphs. In [2], J. Amjadi
et al. improved an upper bound on γdR(G) given in [5] by showing that for any connected
graph G of order n with minimum degree at least two, γdR(G) 6 8n

7 .
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2 ANU V AND APARNA LAKSHMANAN S

1.1. Basic Definitions and Preliminaries. The open neighborhood of a vertex v ∈ V is the
setN(v) = {u : uv ∈ E}, and its closed neighborhood isN [v] = N(v)∪{v}. The vertices inN(v)
are called the neighbors of v. For a set D ⊆ V , the open neighborhood is N(D) = ∪v∈DN(v)
and the closed neighborhood is N [D] = N(D) ∪D. A set D is a dominating set if N [D] = V .
The domination number γ(G) is the minimum cardinality of a dominating set in G.

If f : A→ B is a function from A to B, and C is a subset of A, then the restriction of f to
C is the function which is defined by the same rule as f but with a smaller domain set C and
is denoted by f |C .

A complete graph on n vertices, denoted by Kn, is the graph in which any two vertices are
adjacent. A trivial graph is a graph with no edges. A path on n vertices Pn is the graph with
vertex set {v1, v2, . . . , vn} and vi is adjacent to vi+1 for i = 1, 2, . . . , n− 1. If in addition, vn is
adjacent to v1 and n ≥ 3, it is called a cycle of length n, denoted by Cn. A universal vertex
is a vertex adjacent to all the other vertices of the graph. A pendant (or leaf) vertex of G is
a vertex adjacent to only one vertex of G. The unique vertex adjacent to a pendant vetrtex is
called its support vertex. A graph G is bipartite if the vertex set can be partitioned into two
non-empty subsets X and Y such that every edge of G has one end vertex in X and the other
in Y . A bipartite graph in which each vertex of X is adjacent to every vertex of Y is called a
complete bipartite graph. If |X| = p and |Y | = q, then the complete bipartite graph is denoted
by Kp,q.

The cartesian product of two graphs G and H, denoted by G�H, is the graph with vertex
set V (G)×V (H) and any two vertices (u1, v1) and (u2, v2) are adjacent in G�H if (i) u1 = u2
and v1v2 ∈ E(H), or (ii) u1u2 ∈ E(G) and v1 = v2. If G = Pm and H = Pn, then the cartesian
product G�H is called the m× n grid graph and is denoted by Gm,n.

The corona of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by G1 � G2, is the
graph obtained by taking one copy of G1 and |V1| copies of G2, and then joining the ith vertex
of G1 to every vertex in the ith copy of G2.

A rooted graph is a graph in which one vertex is labelled in a special way so as to distinguish
it from other vertices. The special vertex is called the root of the graph. Let G be a labelled
graph on n vertices. Let H be a sequence of n rooted graphs H1, H2, . . . ,Hn. Then by G(H)
we denote the graph obtained by identifying the root of Hi with the ith vertex of G. We call
G(H) the rooted product of G by H [7].

A Roman dominating function (RDF) on a graph G = (V,E) is defined as a function f :
V → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at
least one vertex u for which f(u) = 2. The weight of a RDF is the value f(V ) =

∑
v∈V f(v).

The Roman domination number of a graph G, denoted by γR(G), is the minimum weight of all
possible RDFs on G.

Let (V0, V1, V2, V3) be the ordered partition of V induced by a DRDF f , where Vi = {v ∈
V : f(v) = i}. Note that there exists a 1− 1 correspondence between the functions f and the
ordered partitions (V0, V1, V2, V3) of V . Thus we will write f = (V0, V1, V2, V3).

For any graph theoretic terminology and notations not mentioned here, the readers may
refer to [4]. The following propositions are useful in this paper.

Proposition 1.1. [5] In a double Roman dominating function of weight
γdR(G), no vertex needs to be assigned the value 1.

Hence, without loss of generality, in determining the value γdR(G) we can assume that V1 = φ
for all double Roman dominating functions under consideration.

Proposition 1.2. [5] For any graph G, 2γ(G) 6 γdR(G) 6 3γ(G).
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IMPACT OF SOME GRAPH OPERATIONS ON DOUBLE ROMAN DOMINATION NUMBER 3

Proposition 1.3. [1] For n > 3,

γdR(Cn) =

{
n, if n ≡ 0, 2, 3, 4 (mod 6),

n+ 1, if n ≡ 1, 5 (mod 6).

Proposition 1.4. [5] For any nontrivial connected graph G, γR(G) < γdR(G) < 2γR(G).

2. Cartesian Product

The Roman domination number of cartesian product graphs is studied in [12]. As far as
we know, there are no results on the double Roman domination number of cartesian product
graphs. In [5], it is proved that for every graph G, γR(G) < γdR(G). Also it is proved in
[10] that γR(G�H) > γ(G)γ(H). Hence we can deduce a general relationship between the
double Roman domination number of cartesian product graphs and the domination number of
its factors as follows:

γdR(G�H) > γ(G)γ(H)

Proposition 2.1. Let G be a graph. For any γdR-function f = (V0, V2, V3) of G,
(i) |V3| 6 γdR(G)− 2γ(G) and
(ii) |V2| > 3γ(G)− γdR(G).

Proof. Since V2∪V3 is a dominating set for G, we have γ(G) 6 |V2|+ |V3|. So, 2γ(G) 6 2|V2|+
2|V3| = γdR(G)− |V3|, and hence (i) is deduced. Also, 3γ(G) 6 3|V2|+ 3|V3| = γdR(G) + |V2|,
and hence (ii) is obtained. �

Theorem 2.2. For any graphs G and H, γdR(G�H) > γ(G)γdR(H)
2 .

Proof. Let V (G) and V (H) be the vertex sets of G and H respectively. Let f = (V0, V2, V3)
be a γdR-function of G�H. Let S = {u1, u2, . . . , uγ(G)} be a dominating set for G. Let
{A1, A2, . . . , Aγ(G)} be a vertex partition of G such that ui ∈ Ai and Ai ⊆ N [ui] (Note that
this partition always exists and it may not be unique). Let {Π1,Π2, . . . ,Πγ(G)} be the vertex
partition of G�H such that Πi = Ai × V (H) for every i ∈ {1, 2, . . . , γ(G)}.

For every i ∈ {1, 2, . . . , γ(G)}, let fi : V (H) → {0, 2, 3} be a function such that fi(v) =

max{f(u, v) : u ∈ Ai}. For every j ∈ {0, 2, 3}, let X
(i)
j = {v ∈ V (H) : fi(v) = j}. Let

Y
(i)
0 = {x ∈ X

(i)
0 : |N(x) ∩ X(i)

2 | 6 1 and N(x) ∩ X(i)
3 = φ}. Hence, we have that f ′i =

(X
(i)
0 − Y

(i)
0 , X

(i)
2 + Y

(i)
0 , X

(i)
3 ) is a double Roman dominating function on H. Thus,

γdR(H) 6 3|X(i)
3 |+ 2|X(i)

2 |+ 2|Y (i)
0 |

6 3|V3 ∩Πi|+ 2|V2 ∩Πi|+ 2|Y (i)
0 |.

Hence,

γdR(G�H) = 3|V3|+ 2|V2|

=

γ(G)∑
i=1

[3|V3 ∩Πi|+ 2|V2 ∩Πi|]

>
γ(G)∑
i=1

[γdR(H)− 2|Y (i)
0 |]

= γ(G)γdR(H)− 2

γ(G)∑
i=1

|Y (i)
0 |.
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4 ANU V AND APARNA LAKSHMANAN S

So,

γ(G)∑
i=1

|Y (i)
0 | >

1

2
[γ(G)γdR(H)− γdR(G�H)]. (2.1)

Now, for every v ∈ V (H), let Zv ∈ {0, 1}γ(G) be a binary vector associated to v as follows:

Zvi =

{
1, if v ∈ Y (i)

0 ,

0, otherwise.

Let tv be the number of components of Zv equal to one. Hence,

∑
v∈V (H)

tv =

γ(G)∑
i=1

|Y (i)
0 |. (2.2)

Note that, if Zvi = 1 and u ∈ Ai, then vertex (u, v) belongs to V0. Moreover (u, v) is not
adjacent to any vertex of V3 ∩Πi and is adjacent to at most one vertex of V2 ∩Πi. So, since V0
is double Roman dominated by V2 ∪ V3, there exists u′ ∈ Xv = {x ∈ V (G) : (x, v) ∈ V2 ∪ V3}
which is adjacent to u. Hence, Sv = (S − {ui ∈ S : Zvi = 1}) ∪Xv is a dominating set for G.

Now, if tv > |Xv|, then we have

|Sv| 6 |S| − tv + |Xv|
= γ(G)− tv + |Xv|
< γ(G)− tv + tv = γ(G),

which is a contradiction. So, we have tv ≤ |Xv| and we obtain∑
v∈V (H)

tv ≤
∑

v∈V (H)

|Xv| = |V2 ∪ V3|

which leads to

2
∑

v∈V (H)

tv ≤ 2|V2|+ 2|V3| ≤ γdR(G�H). (2.3)

Thus, by (1), (2) and (3), we deduce γdR(G�H) > γ(G)γdR(H)
2 . �

Proposition 1.2 and Theorem 2.2 lead to the following result.

Corollary 2.3. For any graphs G and H, γdR(G�H) > γdR(G)γdR(H)
6 .

Theorem 2.4. For any graphs G and H of orders n1 and n2 respectively, γdR(G�H) 6
min{n2γdR(G), n1γdR(H)}.

Proof. Let f1 be a γdR-function of G. Let f : V (G) × V (H) → {0, 2, 3} be a function defined
by f(u, v) = f1(u). If there exists a vertex (u, v) ∈ V (G) × V (H) such that f(u, v) = 0,
then f1(u) = 0. Since f1 is a γdR-function of G, there exists either u1 ∈ NG(u) such that
f1(u1) = 3 or u2, u3 ∈ NG(u) such that f1(u2) = f1(u3) = 2. Hence, we obtain that there
exists either (u1, v) ∈ NG�H((u, v)) with f((u1, v)) = 3 or (u2, v), (u3, v) ∈ NG�H((u, v)) with
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IMPACT OF SOME GRAPH OPERATIONS ON DOUBLE ROMAN DOMINATION NUMBER 5

f((u2, v)) = f((u3, v)) = 2. So, f is a DRDF of G�H. Therefore,

γdR(G�H) 6
∑

(u,v)∈V (G)×V (H)

f((u, v))

=
∑

v∈V (H)

∑
u∈V (G)

f1(u)

=
∑

v∈V (H)

γdR(G) = n2γdR(G).

Similarly, we can prove that γdR(G�H) 6 n1γdR(H) and hence the result is true. �

In [6], it is proved that for the 2× n grid graph G2,n, γR(G2,n) = n+ 1. Hence it is natural
to study the double Roman domination number of grid graphs. For n = 2, G2,n is C4 and by
proposition 1.3, γdR(C4) = 4. So, in the next theorem, we omit the case when n = 2.

Theorem 2.5. For the 2× n grid graph G2,n, n 6= 2, γdR(G2,n) = b 3n+4
2 c.

Proof. Let the vertices of G2,n be denoted by (u1, v1), . . . , (u1, vn), (u2, v1), . . . , (u2, vn) and
define a DRDF f as follows: If n is odd,

f(ui, vj) =

{
3, for i = 1 andj = 3 + 4k; i = 2 and j = 1 + 4k for k > 0 and j 6 n,

0, otherwise.

If n is even,

f(ui, vj) =


3, for i = 1 and j = 3 + 4k; i = 2 and j = 1 + 4k for k > 0 and j < n,

2, for i = 1 & j = n, if n ≡ 2 (mod 4); i = 2 & j = n, if n ≡ 0 (mod 4),

0, otherwise.

It can be easily verified that f is a DRDF and

f(V ) =

{
3(n+1)

2 , if n is odd,
3n
2 + 2, if n is even.

i.e., f(V ) = b 3n+4
2 c and hence γdR(G2,n) ≤ b 3n+4

2 c.

Figure 1. DRDF f for G2,n, n = 1, 3, 4, 5. Black circles denote vertices in V3,
grey circle denote vertex in V2 and empty circles denote vertices in V0.

For the reverse inequality, let {x1, x2, . . . , xγ} be any dominating set for G2,n. If n is odd,
{N [x1], N [x2], . . . , N [xγ ]} is a partition of vertex set of G2,n and |N [xi]| > 3, for i = 1, 2, . . . , γ.

So we have to give 3 to each xi, i = 1, 2, . . . , γ, under any DRDF and hence γdR(G2,n) > 3(n+1)
2 .

(Note that γ(G2,n) = dn+1
2 e). If n is even, let {A1, A2, . . . , Aγ} be any partition of vertex set

of G2,n such that xi ∈ Ai and Ai ⊆ N [xi], i = 1, 2, . . . , γ. Then |Ai| = 1 for at most one i, say
k, and |Ai| ≥ 3, i 6= k. So we have to give 3 to each xi, i = 1, 2, . . . , γ; i 6= k and 2 to xk under
any DRDF. Hence γdR(G2,n) > 3n

2 + 2, if n is even. Hence the result follows. �
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6 ANU V AND APARNA LAKSHMANAN S

3. Corona Operator

In this section, first we find the double Roman domination number of G�H, where H � K1,
and obtain bounds for γdR(G�K1). We also prove that these bounds are strict and obtain a
realization for every value in the range of the bounds obtained. The exact values of γdR(G�K1)
where G is a path, a cycle, a complete graph or a complete bipartite graph are also obtained.
Also we prove that the value of γdR((G�K1)�K1) depends only on the number of vertices in
G.

Proposition 3.1. For every graph G and every H � K1, γdR(G�H) = 3n, where n = |V (G)|.

Proof. The function which assigns 3 to all vertices of G and 0 to all other vertices is a DRDF
of G �H so that γdR(G �H) 6 3n. Also, there are n mutually exclusive copies of H each of
which requires at least weight 3 in a DRDF. Hence the result is true. �

Proposition 3.2. For any graph G, 2n+ 1 6 γdR(G�K1) 6 3n, where n = |V (G)|.

Proof. Let V (G) = {u1, u2, . . . , un} and let u′i be the leaf neighbor of ui in G�K1. We get a
DRDF of G�K1 by simply assigning the value 3 to each u′i so that γdR(G�K1) 6 3n.

To prove the left inequality, let f be any DRDF of G�K1. Being a pendant vertex, each u′i
must be either in V f2 ∪V

f
3 or adjacent to a vertex in V f3 . Also, if u′i ∈ V

f
2 , for all i = 1, 2, . . . , n,

none of the vertices ui can be double Roman dominated by u′i alone. Therefore, f(V ) > 2n+ 1
and hence γdR(G�K1) > 2n+ 1. �

Proposition 3.3. Any positive integer a is realizable as the double Roman domination number
of G�K1 for some graph G if and only if 2n+ 1 6 a 6 3n, where n = |V (G)|.

Proof. Let G be a graph with |V (G)| = n. If γdR(G � K1) = a, then by Proposition 3.2,
2n+ 1 6 a 6 3n.

To prove the converse part, take G as K1,m ∪ (n − m − 1)K1. For definiteness, let
u1, u2, . . . , um+1 be the vertices of K1,m in which u1 is the universal vertex and um+2, . . . , un be
the isolated vertices in G. Let u′i be the leaf neighbor of ui in G�K1. Define f on V (G�K1)
as follows:

f(v) =


3, if v = ui for i = 1,m+ 2,m+ 3, . . . , n,

2, if v = u′i for i = 2, 3, . . . ,m+ 1,

0, otherwise.

Clearly, f is a γdR-function with weight 3(n−m) + 2m = 3n−m. As m varies from 0 to n− 1,
we get G with γdR(G � K1) varies from 3n to 2n + 1. (Note that K1,0 is considered as K1.)
Hence, the result is true. �

Proposition 3.4.

γdR(Pn �K1) =


7n
3 , if n = 3k,
7n+2

3 , if n = 3k + 1,
7n+1

3 , if n = 3k + 2.

Proof. Let Pn : u1u2 . . . un be a path and let u′i be the vertex adjacent to ui in Pn �K1. In a
γdR-function, a pendant vertex must be either in V2 or adjacent to a vertex in V3. If n = 3k
or 3k + 2, we have a γdR-function of Pn with V2 = φ. If n = 3k + 1, let f be a DRDF with
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IMPACT OF SOME GRAPH OPERATIONS ON DOUBLE ROMAN DOMINATION NUMBER 7

minimal weight such that V2 = φ. Define g on V (Pn �K1) as follows:

g(v) =


3, if v = ui ∈ V f3 ,
2, if v = u′i with ui ∈ V

f
0 ,

0 otherwise.

Clearly, g is a γdR-function. Hence if n = 3k, γdR(Pn �K1) = 3.n3 + 2. 2n3 = 7n
3 . If n = 3k + 1,

γdR(Pn �K1) = 3(n−13 + 1) + 2 2(n−1)
3 = 7n+2

3 . If n = 3k + 2, γdR(Pn �K1) = 3(n−23 + 1) +

2( 2(n−2)
3 + 1) = 7n+1

3 . �

Proposition 3.5.

γdR(Cn �K1) =


7n
3 , if n = 3k,
7n+2

3 , if n = 3k + 1,
7n+1

3 , if n = 3k + 2.

Proof. The proof is similar to that of Pn. �

Proposition 3.6. γdR(Kn �K1) = 2n+ 1.

Proof. Let V (Kn) = {u1, u2, . . . , un} and let u′i be the leaf neighbor of ui in Kn � K1. A
γdR-function can be obtained for Kn�K1 by assigning 3 to any one vertex, say u1 of Kn, 2 to
u′i with i 6= 1, and 0 to all other vertices. Hence γdR(Kn �K1) = 2n+ 1. �

Proposition 3.7.

γdR(Kp,q �K1) =

{
2(p+ q) + 1, if p = 1 or q = 1,

2(p+ q + 1), otherwise.

Proof. Let V (Kp,q) = {u1, u2, . . . , up, v1, v2, . . . , vq} and let u′i be the leaf neighbor of ui, for
i = 1, 2, . . . , p and v′j be the vertex adjacent to vj , for j = 1, 2, . . . , q in Kp,q �K1. By the left
inequality of Proposition 3.2, γdR(Kp,q �K1) > 2(p+ q) + 1.
Case 1 : p = 1 or q = 1.
For definiteness, let p = 1. Then the function f defined by

f(u) =


3, for u = u1,

2, for all u = u′i, i = 2, 3, . . . , p and u = v′j , j = 1, 2, . . . , q,

0, otherwise,

is a DRDF of Kp,q �K1 with weight 2(p+ q) + 1. Therefore, γdR(Kp,q �K1) = 2(p+ q) + 1.
Case 2 : p, q > 2.
Define f as follows:

f(u) =


3, for u = u1 and u = v1,

2, for all u = u′i, i = 2, 3, . . . , p and u = v′j , j = 2, 3, . . . , q,

0, otherwise.

f is a DRDF of Kp,q�K1 with weight 6+2(p+q−2) = 2(p+q+1) and hence γdR(Kp,q�K1) 6
2(p + q + 1). For the reverse inequality, if possible suppose that there exists a DRDF g of
Kp,q �K1 with weight 2(p+ q) + 1. Out of p+ q pendant vertices in Kp,q �K1, let k vertices
be in V g2 . Then the remaining p + q − k pendant vertices are either in V g3 or adjacent to
vertices in V g3 . Hence the weight of g, g(V ) = 2(p + q) + 1 > 2k + 3(p + q − k) which implies
k > p+q−1. If k > p+q−1, then k = p+q so that all the pendant vertices are in V g2 and none
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8 ANU V AND APARNA LAKSHMANAN S

of them can double Roman dominate any of the non pendant vertices. Therefore, we need more
vertices having non zero values under g which contradicts the fact that g(V ) = 2(p+ q + 1). If
k = p + q − 1, then one pendant vertex, say x, is either in V g3 or adjacent to a vertex in V g3 .
If x is in V g3 , then x can double Roman dominate only its support vertex. If x is adjacent to
a vertex in V g3 , then its support vertex, say y, is in V g3 and y cannot double Roman dominate
any of the remaining vertices in the partite set of Kp,q containing y. In either case, we need
more vertices having non zero values under g, which again leads to a contradiction as above.
Hence the result is true.

�

Proposition 3.8. For any graph G, γdR((G�K1)�K1) = 5n, where n = |V (G)|.

Proof. Let G be a graph with vertex set V (G) = {u1, u2, . . . , un} and let vi be the leaf neighbor
of ui in G�K1. Let u′i and v′i be the leaf neighbors of ui and vi respectively in (G�K1)�K1.
Then (G�K1)�K1 contains n vertex disjoint P4’s, u′iuiviv

′
i, for i = 1, 2, . . . , n. Let f be any

DRDF on (G � K1) � K1. Then the two pendant vertices, u′i and v′i, in each P4 should be

either in V f2 ∪ V
f
3 or adjacent to a vertex in V f3 . If all the pendant vertices are in V f2 , then to

double Roman dominate non pendant vertices, ui and vi, we need more vertices with non zero
values in each P4. Also note that pendant vertices have no common neighbors. Hence, under
f , the sum of the values of vertices in each of the above mentioned P4’s must be at least 5.
Therefore, f(V ) > 5n.

To prove the reverse inequality, define g as follows:

g(u) =


3, for u = ui,

2, for u = v′i,

0, otherwise.

Clearly g is a DRDF on (G�K1)�K1 with g(V ) = 5n. Hence, the result is true. �
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