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Abstract. Under new representation, the number of RNA secondary structures has been

further studied with the technique of generating function. And according to [7], we get

the combinatorial expression of S∗(n, k), then S∗(n) is computed. Finally, we give another

simple explicit formulas on S∗(n) and S∗(n, k).

1. Introduction

RNA, DNA and protein are the basic composition composed of lives in
the earth [5]. RNA is an important molecule that performs a wide range of
functions in biological systems. RNA has recently become the center of much
attention because of its catalytic properties [1], leading to an increased interest
in obtaining structural information.

RNA molecules are typically described at three different levels: first, the
primary structure of RNA is a single strand made of the ribonucleotides ade-
nine, cytosine, guanine and uracil. The secondary level by indicating the
bonds between pairs of nucleotides. These three levels give the topology of
the molecule, and its geometric shape [3].

RNA can fold back on itself. The pairing rules for its sequences in RNA
alphabet is A pairs with U and G pairs with C. In addition, frequently G is
thought to pair with U and G-U base pairs called wobble base pairs. In this pa-
per, we ignore G-U pairs. The two-dimensional self-pairing is called secondary
structure. Here, we are only concerned with the enumeration problem of RNA
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secondary structures. Previous results on the number of different secondary
structures of RNA molecules are due to M. S. Waterman with their coworkers
[6, 7, 8, 11, 12] and C. D. Svrtan, et [2]. Particularly important work reported
by I.L. Hofacker, P. Schuster, P.F. Stadler is the recursion for the number of
secondary structures with limited length loop [4]. E. A. RØLand discussed
the enumeration about the secondary structures with Pseudoknots [3].

In this paper, we consider the secondary structures without Pseudoknots.
According to a new representation, we compute the total number of RNA
secondary structure of a given length S∗(n), and the explicit expression of
S∗(n) from the generating function is obtained. Then we give an asymptotic
analysis about S∗(n). Finally, And according to [7], we get the combinatorial
expression of S∗(n, k), then S∗(n) is computed.

2. The basic Definition

Definition 2.1 ([9] Definition 3.1). Let R = r1r2 · · · rn, ri ∈ {A,U}or{G, C}, i =
1, 2, · · · , n be the RNA sequence. The secondary structure is a vertex-labelled
graph on n vertices with an adjacency matrix A = (rij) fulfilling : (1) ri,i+1 =
1, 1 ≤ i ≤ n− 1; (2) If ri,k = 1, k 6= i− 1, i+1, ri pairs with rk; (3) For each i
there is at most a single k 6= i−1, i+1 such that ri,k = 1; (4) If ri,j = rk,l = 1
and i < k < j, then i < l < j.

We will call an edge (i, j), |i − j| 6= 1 a bond (or a base pair). A vertex i
connected only to i − 1 and i + 1 will be called unpaired. A vertex i is said
to be interior to the base pair (k, l) if k < i < l. If, in addition, there is no
base pair (p, q) such that k < p < i < q < l, we will say that i is immediately
interior to the base pair (k, l).

Definition 2.2 ([4] Definition 2.2 ). A stack consists of subsequent base pairs
(p−k, q+k), (p−k+1, q+k−1), · · · , (p, q) such that neither (p−k−1, q+k+1)
nor (p + 1, q− 1) is a base pair. k + 1 is the length of the stack. (p− k, q + k)
is the terminal base pair of the stack.

Definition 2.3 ([4] Definition 2.2). A bonding loop consists of a terminal
base pair and unpaired vertices. The number of unpaired vertices is the length
of the bonding loop.

Definition 2.4 ([4] Definition 2.4). A stack [(p, q), · · · (p + k, q − k)] is called
terminal if p − 1 = 0 or q + 1 = n + 1 or if the two vertices p − 1 and q + 1
are not interior to any base pair. The sub-structure enclosed by the terminal
base pair (p, q) of a terminal stack will be called a component of secondary
structure. We will say that a structure on n vertices has a terminal base pair
if (1, n) is a base pair.
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Definition 2.5 ([4]Definition 2.2). A external vertex is an unpaired vertex
which dose not belong to a loop. A collection of adjacent external vertices is
called an external element. If it contains the vertex 1 or n it is a free end,
otherwise it is called joint.

Definition 2.6 ([4]). A internal vertex is an unpaired vertex which is interior
to a base pair.


 	
� �

b br rb br rr br

(a)


 	
� �

�r rb br rb br rb

r b
(b)

b bb br rr r

(c)

�	r rb bb br r
r

(d)

�
 �	b br rb br r
b r

(e)

Fig.1 the elements of RNA Secondary Structures.

We consider the difference of the paired bases, A−U and G−C. Generally,
we ignore the paired bases G−U . The notation (a) is a hairpin; the end of (b)
is called tail; (c) is a stack; (d) is a convex loop; (e) is called a interior loop.

Now, considered the sequence r = r1r2r3, the total possible secondary struc-
tures is 12 kinds. It is shown in Fig.2.

a q q aq a q aq q a q
a q a qq a a qa a a q
a q a qq a a qa q a q

Fig.2 Twelve kinds secondary structures on [3]

3. The recursion formulas

Lemma 3.1 ([9]). Let ordered set [n] = {1, 2, · · · , n} and S∗(n) be the total
number of RNA secondary structures on [n], then S∗(n) satisfies the recurrence
relation:

S∗(n + 1) = 2[S∗(n) +
n−1∑
k=1

S∗(k − 1)S∗(n− k)], n ≥ 1
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with the boundary values S∗(0) = 1, S∗(1) = 2.

Theorem 3.2. Let ϕ(x) =
∑
n≥0

S∗(n)xn, then it fulfills the functional equation

2x2ϕ(x)2 − [1− 2x + 2x2]ϕ(x) + 1 = 0.

In [9], let m = 1 in recurrence (2), we can get the desired result.

Theorem 3.3. The explicit expression of S∗(n) is

S∗(n) =
∑

4v1+3v2≤n+2
v1,v2≥0

(1
2)n+2−3v1−2v2(−1)n+1−4v1−2v222n+2−6v1−3v2

(v1)!(v2)!(n + 2− 4v1 − 3v2)!
,

where (x)k = x(x− 1) · · · (x− k + 1) for any x ∈ C and k ∈ N, (x)0 = 1.

To prove this theorem let the generating function of S∗(n) be y(x) =∑
n≥0 S∗(n)xn. According to Theorem 2, we get the algebraic function sat-

isfied by y(x), that is, 2x2y2−(1−2x+2x2)y+1 = 0. By the initial condition,
we can deduce that

y(x) =
1− 2x + 2x2

4x2
− 1

4x2
(1 + 4x4 − 8x3 − 4x)

1
2

Computing the above function equation, we get multinomial identity

y(x) =
1− 2x + 2x2

4x2
−

∑
4v1+3v2≤n+2

v1,v2≥0

( 1
2

v1 v2 n + 2− 4v1 − 3v2

)

(−1)n+1−4v1−2v222n+2−6v1−3v2 · xn

Hence, by virtue of the above identity , we obtain the coefficient of xn,
which is just the explicit value of S∗(n). That is,

S∗(n) =
∑

4v1+3v2≤n+2
v1,v2≥0

(1
2)n+2−3v1−2v2 · (−1)n+1−4v1−2v2 · 22n+2−6v1−3v2

(v1)!(v2)!(n + 2− 4v1 − 3v2)!
.

Lemma 3.4 ([8]). Let y(x) =
∑

n=0 anxn be the ordinary generating function
of the sequence an which is known to have the property an ≥ 0. let y satisfy
the functional equation F (x, y) = 0, and let r > 0, s > a0 be the unique real
solutions of the system F (r, s) = 0, Fy(r, s) = 0. Then

an ∼

√
rFx(r, s)

2πFyy(r, s)
n−

3
2 r−n .

Theorem 3.5. S∗(n) ∼

√
1 + (1−

√
2)r

4πr2
n−

3
2 r−n.
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In the present case, by Theorem 3.2, we can let

F (x, y) = 2x2y2(x)− (1− 2x + 2x2)y(x) + 1,

and we have the following relations

2r2s2 − (1− 2r + 2r2)s + 1 = 0 ,

4r2s− (1− 2r + 2r2) = 0 , r 6= 0 ,

then s = 1√
2r

. Hence, according to Lemma 4, we get

Fx(r, s) = 4rs2 − 4rs + 2, Fyy(r, s) = 4r2.

Then the desired result is obtained.
S∗n,k is the set of secondary structures on n vertices that have exactly k base

pairs and the bonding loop with limited length 1. In [9], let m = 1 in Theorem
5.1.1, we can get the following result.

Theorem 3.6. Let S∗(n, k) = |Sn,k|, then

S∗(n, k) =2[S∗(n− 1, k) + S∗(n− 2, k − 1) +
n−2∑
j=2

k−1∑
i=0

S∗(j − 1, i)

S∗(n− j − 1, k − 1− i)], n ≥ 4 , 0 ≤ k ≤ bn− 1
2

c.

with the boundary values S∗(n, 0) = 2n, n ≥ 1, S∗(0, k) = 0, k ≥ 0.

Theorem 3.7. The generating function of S∗(n, k) is denoted by φ(x, y), then
it satisfied the following recurrence:

φ(x, y) =
1

4x2y
[1− 2x− 2x2y −

√
(1− 2x− 2x2y)2 − 16x3y].

From Theorem 3.6, we get

φ(x, y) =
∞∑

n=0

∞∑
k=0

S∗(n, k)xnyk

=
3∑

n=0

∞∑
k=0

S∗(n, k)xnyk +
∞∑

n=4

∞∑
k=0

S∗(n, k)xnyk

= 2x + (2x)2 + (2x)3 + 2xφ + 2x2yφ− 2x(2x + (2x)2) + 2x2yφ2

= 2x + 2xφ + 2x2yφ + 2x2yφ2

From which we get the following identity,

2x2yφ2 − [1− 2x− 2x2y]φ + 2x = 0.

By the initial condition, we can get the desired result.
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Theorem 3.8.

S∗(n, k) =
∑

2v1+v2≤n−2k
v2+2v3≤k
v1,v2,v3≥0

(2)n−k(−2)n−k−2v1−v2−2v3

( 1
2

v1 n− 2k − 2v1 − v2 k − v2 − 2v3 v2 v3

)
According to Theorem 3.7, φ(x, y) can be written in the form

φ(x, y) =
1− 2x− 2x2y

4x2y
− 1

4x2y
[(1− 2x− 2x2y)2 − 16x3y]

1
2 ,

We only need decompose the part

g(x, y) = − 1
4x2y

[(1− 2x− 2x2y)2 − 16x3y]
1
2 .

By virtue of multinomial identity, we have

g(x, y)

= − 1
4x2y

∑
v1v2v3v4v5

( 1
2

v1 v2 v3 v4 v5

)
(4x2)v1(−4x)v2(−4x2y)v3(−8x3y)v4(4x4y2)v5

=
∑

v1v4v5

( 1
2

v1 n− 2v1 − v4 − 2k k − v4 − 2v5 v4 v5

)
2n−k−1(−2)n−k−2v1−v4−2v5−1xn−2yk−1

=
∑

2v1+v2≤n−2k
v2+2v3≤k
v1,v2,v3≥0

2n−k(−2)n−k−2v1−v2−2v3

( 1
2

v1 n− 2k − 2v1 − v2 k − v2 − 2v3 v2 v3

)
xnyk.

The coefficient of xnyk in the above recurrence is the expected result.

Theorem 3.9. S∗(n) =
bn−1

2
c∑

k=0

S∗(n, k).

It is much easier to compute S∗(n, k) than S∗(n). In [7], Waterman had
been constructed a bijection between Φn,k to one set of tree denoted by Γn,k.
Let s∗(n, k) = |Φn,k| and t(n, k) = |Γn,k|. Now we give another simple explicit
formula on S∗(n) and S∗(n, k).

Lemma 3.10 ([7] Proposition 2.1). For all n, k ≥ 1, there exists a bijection

ϕ : Φn+k−2, k−1 → Γn,k.

In [7], the explicit expression about s∗(n, k) is given according to Lemma
3.10. It is shown as the following Lemma.
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Lemma 3.11 ([7] Theorem 2.2.). The number of secondary structures over a
sequence of length n having exactly k pairs is given by

s∗(n, k) =
1
k

(
n− k

k + 1

)(
n− k − 1

k − 1

)
for n, k ≥ 0.

In this paper, we consider the difference between A − G base pairs and
G − U base pairs. By the construction of the Γn,k, we can dye two colors in
each branch of the tree. Then we get the combinatoric expression of S∗(n, k).

Theorem 3.12.

S∗(n, k) = 2n−k 1
k

(
n− k

k + 1

)(
n− k − 1

k − 1

)
.

The proof is omitted.

Corollary 3.13. S∗(n) =
bn−1

2
c∑

k=0

2n−k 1
k

(
n−k
k+1

)(
n−k−1

k−1

)
.

By virtue of Theorem 3.9. and Theorem 3.12., we can easily get the result.
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