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Abstract. In this article, we extend Rice’s Lemma and give asymptotic value to the combinatorial

alternative sums by the lemma and residue theorem.

Rice’s method is designed to estimate the sums

Dfn =
n∑

k=0

(
n

k

)
(−1)kfk,

where the sequence fk can be extended as an analytic function f(k). Many prob-
lems in the analysis of algorithms lead to a sequence Dfn. In the sixties, Knuth
encountered the sum

∑n
k=2

(
n
k

) (−1)k

2k−1−1
in the study of radix exchange sorting. One

can find others examples in the analysis of digital structures or conflict resolution
in broadcast communications.

There are two classical approaches to estimate such alternating sums: One can ar-
range the sum to obtain harmonic sums, which can be tackled by Mellin transforms.
This is the standpoint of De Bruijn. Rice proposed a direct approach, which relies
on the Rice’s Lemma.

1. Preliminaries

Lemma 1 [1]. Let f(z) be an analytic function defined in a neighborhood Ω of the
positive real axis [0,∞). Let C be a contour enclosing the integers n0, . . . , n but no
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singularity of f(z). Then
n∑

k=n0

(
n

k

)
(−1)kf(k) =

(−1)n

2πi

∫

C
f(z)

n!dz

z(z − 1) . . . (z − n)
.

Lemma 2. Let f(z) be analytic in a domain D except for a finite number isolated
singularities z1, z2, . . . , zn. Let C be a positively oriented simple closed curve in the
domain D which encircles all singularities, then

∮

C
f(z)dz = 2πi

n∑

k=1

Res[f(z), zk] .

Definition 1. The Gamma function is a generalization of the factorial to complex
numbers, one of its definitions is

Γ(s) =
∫ ∞

0

e−tts−1dt .

It satisfies the following relations:

Γ(n) = (n− 1)! , ∀n ∈ N0 , (1.1)
n∏

i=0

(s− i) =
Γ(s + 1)
Γ(s− n)

, (1.2)

Γ(n + 1)
Γ(n + 1− α)

= nα(1 + O(
1
n

) , (1.3)

Γ′(x)
Γ(x)

= −γ − 1
x
−

∞∑

k=1

(
1

x + k
− 1

k
) . (1.4)

Definition 2 [1]. The so called incomplete Hurwitz ζ function is:

ζn(r, β) =
n−1∑

i=0

1
(i + β)r

,

ζn(r, 1) defines the generalized harmonic ζn(r) and their limit (n → ∞) is the
famous Riemann ζ function.

From (4) it follows, that

ζn+1(1, β) = ln(n)− Γ′(β)
Γ(β)

+ O(
1
n

) .

Definition 3 [3]. The modified Bell polynomials Lm = Lm(x1, x2, . . . , xm) are
defined as

exp(
∞∑

k=1

xk
tk

k
) = 1 +

∞∑

k=1

Lmtm. (1.5)
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It is rather technical than difficult to proof that in general

Lm(x1, x2, . . . , xm) =
∑

m1+2m2+···=m

1
m1!m2! . . .

(x1

1

)m1
(x2

2

)m2

. . . ,

and from this, we have

exp(
∞∑

k=1

xk
tk

k
) = 1 + x1t +

(
x2

2
+

x2
1

2

)
t2 +

(
x3

3
+

x1x2

2
+

x3
1

6

)
t3

+
(

x4

4
+

x1x3

3
+

x2
2

8
+

x2x
2
1

4
+

x4
1

24

)
t4 + · · · .

Definition 4 [1]. A function f(z) in an unbounded domain Ω is said to have
polynomial growth , if for some r the formula |f(z)| = O(|z|r) holds as z → ∞ in
Ω. We also call r the degree of f(z).

Property 1 [1]. If f(z) is of polynomial growth (is of finite degree) in the half-
plane <(z) ≥ c for some c < n0, we have the alternative representation

n∑

k=n0

(
n

k

)
(−1)kf(k) = − (−1)n

2πi

∫ c+i∞

c−i∞
f(z)

n!dz

z(z − 1) . . . (z − n)
, (1.6)

valid for n large enough, namely as soon as n > r + 1.

2. Main results

We extend Rice’s Lemma as follows.

Theorem 1. Let f(z) be an analytic function defined in a neighborhood Ω of the
positive real axis [0,∞). Let C be a contour enclosing the integers n0, . . . , n, n +
1, n + 2, . . . , np + q(np > q) but does not include any of the integers 0, 1, . . . , n0 − 1
and not include singularity of f(z). then

np+q∑

k=n0

(
np + q

k

)
(−1)kf(k)

=
(−1)np+q

2πi

∫

C
f(z)

(np + q)!dz

z(z − 1) . . . (z − np− q)
. (2.1)

Proof. We apply the residue theorem. Taking into account contribution of the
simple poles at the integers n0, . . . , n, n + 1, n + 2, . . . , np + q . The integral equals
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the sum of the residues of the integrand multiply 2πi. Then we have:

Resz=kf(z)
(np + q)!

z(z − 1) . . . (z − np− q)

=Resz=k
1

z − k

(
f(z)

(np + q)!
z(z − 1) . . . (z − k + 1)(z − k − 1) . . . (z − np− q)

)

=f(k)
(−1)np+q−k(np + q)!

k!(np + q − k)!
.

Simple summation for k = n0, . . . , n, n + 1, n + 2, . . . , np + q, which completes the
proof. It is the conclusion of Lemma 1 when p = 1, q = 0.

Next, we consider the basic case of a rational function.

Theorem 2. Let f(z) be a rational function which is analytic in a neighborhood
of [n0,+∞). If n is big enough we have

np+q∑

k=n0

(
np + q

k

)
(−1)kf(k)

= −(−1)np+q
∑

z

Resf(z)
(np + q)!

z(z − 1) . . . (z − np− q)
, (2.2)

where the sum is extended to all poles z of f(z)
z(z−1)...(z−np−q) not on [n0,+∞).

Proof. First, we use Theorem 1 and take as path of integration a large circle of
radius R centered at the origin that avoids the poles. Then let R → +∞, and n >
r+1 the integral on the right side of (2.1) tends to zero by a similar argument used
for (2.2). By the residue Theorem, the integral also equals

∑np+q
k=n0

(
np+q

k

)
(−1)kf(k)

plus the sum of the residues of (2.2) at the other poles of the integrand.

As a next step, we try to express the residues. As every rational function can be
expressed as a linear combination of terms of the form B(z − b)−r, where r ∈ N0,
we only have to consider function of this type.

Theorem 3. Let α be a complex number not in N , and

T (α) = (−1)np+q(np + q)!Resα
1

(z − α)r

1
z(z − 1) . . . (z − np− q)

.

Then T (α) has the following asymptotic

T (α) = −Γ(−α)(np)α (lnnp)r−1

(r − 1)!
(1 + O(

1
lnnp

)) .
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Proof.

T (α) = −(np + q)![(z − α)r−1]
1

(−z)(1− z) . . . (np + q − z)

= −(np + q)![tr−1]
1

(−t− α)(1− t− α) . . . (np + q − t− α)

= −(np + q)![tr−1] exp(−
np+q∑

j=o

ln(j − α− t))

=
−(np + q)!

(−α)(1− α) . . . (np + q − α)
[tr−1] exp(

∞∑
m=1

ζnp+q+1(m,−α)
tm

m
)

= −Γ(np + q + 1)Γ(−α)
Γ(np + q + 1− α)

Lr−1(ζnp+q+1(1,−α), ζnp+q+1(2,−α), . . .)

= −Γ(−α)(np + q)αLr−1(ln(np + q)− Γ′(−α)
Γ(−α)

+ O(
1

np + q
), ζnp+q+1(2,−α), . . .)(1 + O(

1
np + q

))

= −Γ(−α)(np + q)α (ln(np + q))r−1

(r − 1)!
(1 + O(

1
ln(pn + q)

))

= −Γ(−α)(np)α(1 +
q

np
)α

(lnnp(1 + q
np ))r−1

(r − 1)!
(1 + O(

1
ln(np + q)

))

= −Γ(−α)(np)α (lnnp)r−1

(r − 1)!
(1 + O(

1
ln(np)

)) .

Applications on Theorem 2 and Theorem 3 are given as follows two Examples.

Example 1. Denote the sums s(m) =
np∑

k=1

(
np

k

)
(−1)k

km
, for m any positive integer.

Then

−s(m) = Pm(ln(np)) + O(
ln(np)m

np
) ,

where Pm is a polynomial of degree m.
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by setting q = 0 and f(k) = 1/km in Theorem 2:

s(m) = −Resz=0(
1

zm+1

(−1)np(np)(np− 1) . . . 2 · 1
(z − np)(z − np + 1) . . . (z − 2)(z − 1)

)

= −Resz=0(
1

zm+1
((1− z

1
)(1− z

2
) . . . (1− z

np
))−1)

= −[zm]((1− z

1
)(1− z

2
) . . . (1− z

np
))−1

= −[zm] exp(−
np∑

j=1

ln(1− z

j
))

= −[zm] exp(
np∑

j=1

∞∑

k=1

zk

kjk
) = −[zm] exp(

∞∑

k=1

ζnp(k)
zk

k
) .

−s(m) =
∑

m1+2m2+...=m

1
m1!m2! . . .

(
ζnp(1)

1
)m1(

ζnp(2)
2

)m2 . . .

= (1 + O(
1
np

))
∑

m1+2m2+...=m

1
m1!m2! . . .

(ln(np) + γ + O(
1
np

))m1(
ζ(2)
2

)m2 . . . .

Since the ζ(k) are constants we have the asymtotics for a polynomial Pm of degree
m.

−s(m) = Pm(ln(np)) + O(
ln(np)m

np
) .

For m = 1, 2, we get

−s(1) = ln(np) + γ + O(
1
np

) ,

−s(2) =
1
2
(ln(np))2 + γ ln(np) +

γ

2
+

π2

12
+ O(

lnnp

np
) .

Example 2. Let the asymptotic analysis of the sequence of numbers

T (n) =
np+q∑

k=o

(
np + q

k

)
(−1)k

k2 + 1
.

Then

T (n) = ρ cos(θ0 + log(np)) + o(1).
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We use Theorem 2 and Theorem 3:
np+q∑

k=o

(
np + q

k

)
(−1)k

k2 + 1

=− (Γ(−α1)(np)α1
(lnnp)r−1

(r − 1)!
+ Γ(−α2)(np)α2

(lnnp)r−1

(r − 1)!
)(1 + O(

1
lnnp

))

=− (Γ(−i)(np)i + Γ(i)(np)−i)(1 + O(
1

lnnp
))

=− (Γ(−i)(cos log(np) + i sin log(np))

+ Γ(i)(cos log(np)− i sin log(np)))(1 + O(
1

lnnp
))

=− ((Γ(−i) + Γ(i)) cos log(np) + i(Γ(−i)− Γ(i)) sin log(np))(1 + O(
1

lnnp
))

=− (
√

Γ2(−i) + Γ2(i))(cos θ0 cos log(np)− sin θ0 sin log(np))(1 + O(
1

lnnp
))

=ρ cos(θ0 + log(np)) + o(1) .
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