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Abstract. In this paper, enumeration of Independent Sets of Graphs is NP-hard, our ways

are combinatorial counting methods. In the use of the number N(G, k) of S(n)-factors with

exactly k components, the authors gain the representing formula of the number α(G) of all

k independent sets of graphs and the equality α(G) = A(Ḡ), where A(Ḡ) is the number of

all S(n)-factors in Ḡ, and present the explicit formulas of enumeration of independent sets

of graphs for a great deal of graphs. Finally, applications for the mean color numbers µ(G)

are given.

1. Introduction

In this paper, the authors discuss enumeration of the number α(G) of all
k independent sets of graphs by means of counting theory of S(n)-factors.
Enumeration of Independent Sets of Graphs is NP-hard.

Definition 1.1. For S(n) = {Ki : 1 ≤ i ≤ n}, n ≥ 1, Ki is a complete graph
with i vertices, if M is a subgraph of any graph G, and each component of
M is all isomorphic to some element of S(n) = {Ki : 1 ≤ i ≤ n}, then M is
called one S(n)-subgraph, if M is a spanning subgraph of G, then M is called
one S(n)-factor of G.

Let N(G, k) denote the number of S(n)-factors with exactly k components.
A(G) is the number of all S(n)-factors, namely, A(G) =

∑n
k=1 N(G, k).

Definition 1.2. For any n-coloring Γ of G, let L(Γ) denote the actual number
of colors used, the average of L(Γ),s over all n-coloring Γ is called the mean
color number. (see [2])
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2 Liming Yang

Let µ(G) denote the mean color number of any graph G. In the paper[3],
F. M. Dong gained bounds for mean color numbers of graphs.

In the paper[4], Yang has given the recurrence relation of A(G). In the
paper[5], Yang derived the recurrence formula of regular m-furcating tree. So
far, we have solved counting problems of N(G, k)(see[6]), involving the repre-
senting formula of N(G, k)and counting formulas of a great deal of graphs, for
examples, any path, cycle, complete graph, O

⊙
Cn, wind graph Kd

n, complete
d-partite graph, n-2-regular graph and n-3-regular graph. In this paper, the
authors present the formulas of classes of graphs α(G) by means of counting
theory of N(G, k). Specially, α(G) of any tree is given. Finally, applications
for µ(G) of any tree are given.

2. Lemmas

Here we will denote that α(G, k) is the number of partitions of V (G) into
exactly k non-empty independent sets of any graph G. α(G) is the number
of all partitions of V (G) into non-empty independent sets of any graph G,
namely, α(G) =

∑n
k=1 α(G, k).

Lemma 2.1 ([12]). Suppose N(G, k) is the number of S(n)-factors with exactly
k components in G, and the chromatic polynomial of graph G is f(G, t) =
n∑

p=1
Ypt

p, then the representing formula of α(G, k) is the following

α(G, k) =
n∑

p=k

N(Kp, k)Yp ,

where

N(Kp, k) =
∑

Pp
i=1 ibi=p

Pp
i=1 bi=k

p!
b1!

p∏

i≥2

1
bi!(i!)bi

.

Lemma 2.2 ([12]). There exists the equality α(G, k) = N(Ḡ, k).

Lemma 2.3 ([12]). Suppose µ(G) is the mean colour number of G, then

µ(G) =

nP
k=1

k(n)kN(Ḡ,k)

nP
k=1

(n)kN(Ḡ,k)
, where N(G, k) is the number of all S(n)-factors with

exactly k components in G.

Lemma 2.4. If S(n, k) is the Stirling number of the second kind, then N(Kn, k) =
S(n, k), where Kn is a complete graph with n vertices.

Lemma 2.5 ([9]). Let Bell number B(n) =
∑n

k=1 S(n, k). Then B(n) =
1
e

∑∞
k=1

kn

k!
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Enumeration of independent sets of graphs 3

Lemma 2.6 ([5]). If G∩H = φ for any graphs G and H, then N(G∪H, k) =∑
l+m=k

N(G, l)N(H, m).

3. Main Theorems

Theorem 3.1. If α(G) is the number of all partitions of V (G) into non-empty

independent sets of any graph, then α(G) =
n∑

k=1

n∑
p=k

N(Kp, k)Yp, where Yp are

coefficients of the chromatic polynomial of f(G, t).

Proof. Because of α(G) =
n∑

k=1

α(G, k), and by Lemma 2. 1

α(G, k) =
n∑

p=k

N(Kp, k)Yp ,

where Yp are coefficients of the chromatic polynomial of f(G, t). Then α(G) =
n∑

k=1

n∑
p=k

N(Kp, k)Yp, where Yp are coefficients of the chromatic polynomial of

f(G, t). ¤
Theorem 3.2. There exists the equality α(G) = A(Ḡ), where A(Ḡ) is the
complementary graph Ḡ of G.

Proof. With α(G) =
∑n

k=1 α(G, k), and by Lemma 2. 2 α(G, k) = N(Ḡ, k),
so we gain α(G) =

∑n
k=1 N(Ḡ, k) = A(Ḡ). ¤

4. Classes of Graphs α(G)

In this section, we will obtain classes of graphs α(G), for examples, any
(n-2)-regular graph, (n-3)-regular graph and complete d-partite graph, tree.

Theorem 4.1. If G is a (n-2)-regular graph with n (even 2m) vertices, then
α(G) = 2m.

Proof. Let G be a (n-2)-regular graph with n (even 2m), then Ḡ is a 1-regular
graph, namely, Ḡ = K2

⋃
K2

⋃ · · ·⋃ K2, and the number of K2 is m. (see [7])
By Corollary 4. 1 we have

N(Ḡ, k) =





0 , 1 ≤ k < n
2 ,

( n
2

k − n
2

)
, n

2 ≤ k ≤ n .

Finally, α(G) =
∑n

k=1 N(Ḡ, k) =
2m∑

k=m

(
m

k −m

)
=

m∑

p=0

(
m

p

)
= 2m. ¤
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4 Liming Yang

Theorem 4.2. If G is a (n-3)-regular graph with n vertices, n ≥ 6 and Ḡ ∼=
Cn, then α(G) = Ln, where Ln is Lucas number.

Proof. Let G be a (n-3)-regular graph with n vertices, n ≥ 6 and Ḡ ∼= Cn,
then we have (see [7])

N(Ḡ, k) = N(Cn, k) =





0 , 1 ≤ k < n
2 ,

n

k

(
k

n− k

)
, n

2 ≤ k ≤ n .

By Corollary 4. 1 α(G, k) = N(Ḡ, k), then the result is given the following

α(G) =
n∑

k=n
2

n
k

(
k

n− k

)
(n even), α(G) =

n∑
k=[n

2
]+1

n
k

(
k

n− k

)
(n odd). When

n ∈ N , α(G) = Ln, where Ln is Lucas number, a = 1−√5
2 , b = 1+

√
5

2 . Also
Ln is the number of all S(n)-factors, Ln = an + bn, a = 1−√5

2 , b = 1+
√

5
2 (see

[4]). ¤

Corollary 4.3. If G is a (n-3)-regular graph with n vertices, and

Ḡ = Cn1

⋃
Cn2

⋃
· · ·

⋃
Cnq ,

n1 + n2 + · · ·+ nq = n, Cni ∩ Cnj = φ for any i and j, i 6= j, 3 ≤ nj ≤ n, 1 ≤
j ≤ q, q ≥ 1, n ≥ 6, the number of nj = 3 is l, then α(G) = 5l

∏q−l
j=1 Lnj ,

where Lnj is the nj-th Lucas number, and
∑q−l

j=1 nj = n− 3l, when nj = 3,

N(C3, l) =





1 , l = 1 ,

3 , l = 2 ,

1 , l = 3 ,

when nj ≥ 4,

N(Cnj , lj) =





0 , 1 ≤ lj <
nj

2 ,

nj

lj

(
lj

nj − lj

)
,

nj

2 ≤ lj ≤ nj .

Proof Because of Ḡ = Cn1

⋃
Cn2

⋃ · · ·⋃ Cnq , n1 + n2 + · · · + nq = n, and
Cni ∩ Cnj = φ for any i and j, i 6= j, 3 ≤ nj ≤ n, 1 ≤ j ≤ q, q ≥ 1, n ≥ 6, by
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Enumeration of independent sets of graphs 5

Lemma 2.6 then

N(G, k) = N(Cn1 ∪ Cn2 ∪ · · · ∪ Cnq , k)

=
∑

l1+l2+···+lq=k

N(Cn1 , l1)N(Cn2 , l2) · · ·N(Cnq , lq)

=
∑

l1+l2+···+lq=k

q∏

j=1

N(Cnj , lj).

By Theorem 2, we have

α(G) = A(Ḡ) =
n∑

k=1

N(Ḡ, k) =
n∑

k=1

∑

l1+l2+···+lq=k

q∏

j=1

N(Cnj , lj),

when nj = 3,

N(C3, l) =





1 , l = 1 ,

3 , l = 2 ,

1 , l = 3 ,

when nj ≥ 4,

N(Cnj , lj) =





0 , 1 ≤ lj <
nj

2 ,

nj

lj

(
lj

nj − lj

)
,

nj

2 ≤ lj ≤ nj .

Finally, α(G) =
∏q

j=1

nj∑
j=1

N(Cnj , lj) =
∏q

j=1 A(Cnj ) = 5l
∏q−l

j=1(a
nj +bnj ) =

5l
∏q−l

j=1 Lnj , where Lnj is the nj-th Lucas number, and
∑q−l

j=1 nj = n− 3l.

Theorem 4.4. If G is a complete d-partite graph Kn1,n2,··· ,nd
, and n1 +n2 +

· · ·+nd = n, then α(G) =
∏d

j=1 B(nj), where B(nj) is Bell number, nj , n ∈ N .

Proof. Because of G = Kn1,n2,··· ,nd
, and n1 + n2 + · · · + nd = n, then Ḡ =

Kn1

⋃
Kn2

⋃ · · ·⋃ Knd
, n1 + n2 + · · ·+ nd = n, Kni ∩Knj = φ for any i and
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6 Liming Yang

j, i 6= j, 3 ≤ nj < n, 1 ≤ j ≤ d, d ≥ 2, by Lemma 2.6 we have

N(G, k) = N(Kn1 ∪Kn2 ∪ · · · ∪Knd
, k)

=
∑

l1+l2+···+ld=k

N(Kn1 , l1)N(Kn2 , l2) · · ·N(Knd
, ld)

=
∑

l1+l2+···+ld=k

d∏

j=1

N(Knj , lj).

With Lemma 2.4 N(Kn, k) = S(n, k), then

N(G, k) = N(Kn1 ∪Kn2 ∪ · · · ∪Knd
, k)

=
∑

l1+l2+···+ld=k

N(Kn1 , l1)N(Kn2 , l2) · · ·N(Knd
, ld)

=
∑

l1+l2+···+ld=k

d∏

j=1

S(nj , lj)

By Theorem 2, then we have

α(G) = A(Ḡ) =
n∑

k=1

N(Ḡ, k) =
n∑

k=1

∑

l1+l2+···+ld=k

d∏

j=1

S(nj , lj)

=
d∏

j=1

nj∑

lj=1

S(nj , lj) =
d∏

j=1

B(nj),

where B(nj) is Bell number nj , n ∈ N .
¤

Corollary 4.5. If G is a complete tri-partite graph Kn1,n2,n3, and n1 + n2 +
n3 = n, then α(G) = B(n1)B(n2)B(n3), where B(nj) is Bell number, nj ∈
N, j = 3.

Proof. It is easily proved by Theorem 4.5 Here we omit the proof. ¤

Corollary 4.6. If G is a complete tri-partite graph Kn,n,n, then α(G) =
B3(n), where B(n) is Bell number, n ∈ N .

Proof. It is easily proved by Corollary 4.2 Here we omit the proof. ¤

Corollary 4.7. If G is a complete bi-partite graph Kn,n, then α(G) = B2(n),
where B(n) is Bell number, n ∈ N .

Proof. It is easily proved by Corollary 4.3 Here we omit the proof. ¤
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Enumeration of independent sets of graphs 7

Theorem 4.8. If G is a tree with n vertices, then

α(G) =
n∑

k=1

n∑

p=k

(−1)n−p

(
n− 1
p− 1

)
N(Kp , k),

where

N(Kp , k) =
∑

pP
i=1

ibi=p,
pP

i=1
bi=k

p!
b1!

∏

i≥2

1
bi!(i!)bi

, 2 ≤ p k ≤ n .

Proof. If G is a tree with n vertices, then the chromatic polynomial of G is

f(T, t) = t(t− 1)n−1 =
n−1∑
k=0

(−1)n−1−k
(
n−1

k

)
tk+1

Coefficients of the chromatic polynomial of G are Yp = (−1)n−p

(
n− 1
p− 1

)
, 1 ≤

p ≤ n. By Theorem 4. 1 α(G) =
n∑

k=1

n∑
p=k

N(Kp, k)Yp, then we have

α(G) =
n∑

k=1

n∑

p=k

(−1)n−p

(
n− 1
p− 1

)
N(Kp , k),

where

N(Kp , k) =
∑

pP
i=1

ibi=p,
pP

i=1
bi=k

p!
b1!

∏

i≥2

1
bi!(i!)bi

, 2 ≤ p k ≤ n .

¤
Corollary 4.9. Suppose Pn is any path with length n, and has n + 1 vertices,

then α(Pn) =
n+1∑
k=1

n+1∑
p=k

(−1)n+1−p
(

n
p−1

)
N(Kp , k), where

N(Kp , k) =
∑

pP
i=1

ibi=p,
pP

i=1
bi=k

p!
b1!

∏

i≥2

1
bi!(i!)bi

, 2 ≤ p k ≤ n + 1 .

Proof. Because Pn is a special tree with n+1 vertices, by Theorem 6 we derive

the result α(Pn) =
n+1∑
k=1

n+1∑
p=k

(−1)n+1−p
(

n
p−1

)
N(Kp , k), where

N(Kp , k) =
∑

pP
i=1

ibi=p,
pP

i=1
bi=k

p!
b1!

∏

i≥2

1
bi!(i!)bi

, 2 ≤ p k ≤ n + 1 .

¤
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8 Liming Yang

So far, we have solved NP-hard problem of enumeration of independent sets
of graphs, involving the representing formula of enumeration of independent
sets of graphs and explicit formulas for a great of graphs.

Applications

In the section, applications are given for N(G, k) and α(G, k) of graphs.

Theorem 4.10. If G is any tree with n vertices, then µ(G)
n ∼ (1− 1

e ), n ∼ ∞.

Proof. If G is a tree with n vertices, then we have

N(Ḡ, k) =
n∑

p=k

(−1)n−p

(
n− 1
p− 1

)
S(n, k).

By Lemma 3.3 we have

µ(G) =

n∑
k=1

k(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

n∑
k=1

(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

.

On the other hand, if G is a tree with n vertices, and µ(G) = n(1− P (G,n−1)
P (G,n) ),

P (G, t) = t(t−1)n−1, then µ(G) = n− (n−2)n−1

(n−1)n−2 . Finally, we derive the equality

n∑
k=1

k(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

n∑
k=1

(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

= n− (n− 2)n−1

(n− 1)n−2

n∑
k=1

k(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

n∑
k=1

n(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

= 1− (n− 2)n−1

n(n− 1)n−2

So that we have the asymptotic formula µ(G)
n ∼ (1− 1

e ), n ∼ ∞. ¤
Corollary 4.11. There exists the combinatorial formula

n∑
k=1

k(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

n∑
k=1

n(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

= 1− (n− 2)n−1

n(n− 1)n−2 .
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Enumeration of independent sets of graphs 9

Proof. The combinatorial formula from the proving course 0f Theorem 4.10
Omitted. ¤
Corollary 4.12. There exists the asymptotic formula

n∑
k=1

k(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

n∑
k=1

n(n)k

n∑
p=k

(−1)n−p
(
n−1
p−1

)
S(n, k)

∼ (1− 1
e
), n ∼ ∞,

where S(n, k) is the Stirling number of the second kind.

Proof. The asymptotic formula from the proving course of Theorem 4.10 Omit-
ted. ¤
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