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The Lipschitz condition in the expansion of

weighted empirical log-likelihood ratio ∗

Jian-Jian Ren †

Abstract

So far, there has not been any work on likelihood-based interval estimates with

partly interval-censored data. In this article, we derive the high-order expansion

of the weighted empirical log-likelihood ratio for survival probabilities with right

censored data, doubly censored data and partly interval-censored data, and we show

that if the Lipschitz condition is satisfied for the distribution of the leading term(s) of

this expansion, the theoretical coverage accuracy equation for the weighted empirical

likelihood ratio confidence intervals (WELRCI) can be obtained. When there is no

censoring, such Lipschitz condition is established in an example where smoothing

based on the kernel density method is used. Simulation results show that WELRCI

for survival probabilities compare well with those empirical likelihood-based methods

and other alternative methods.

1. Introduction Since Owen (1988), the empirical likelihood method has been de-

veloped to construct tests and confidence sets based on the nonparametric likelihood ratio.

For more references, see Owen (1990, 1991), DiCiccio, Hall and Romano (1991), Qin and

Lawless (1994), Mykland (1995), among others. A recent book titled ‘Empirical Likeli-

hood’ by Owen (2001) provides a quite complete review of the developments on this topic.

∗This research was partially supported by NSF Grants DMS-0204182 and DMS-0604488.
Received: March 8, 2006; Accepted: July 7, 2006.
Key words and phrases: Bootstrap; doubly censored data; weighted empirical likelihood; interval censored
data; partly interval-censored data; right censored data.
AMS 2000 subject classifications. Primary 62F25; secondary 60F10.

†Mailing Address: Department of Mathematics, University of Central Florida, Orlando, FL 32816.
E–mail: jren@mail.ucf.edu.

International Journal of Statistics and Management Systems 
Vol. 3 No. 1 (January- June, 2018), ISSN: 0973-7395

Received: March 8, 2018; Accepted: July 7, 2018



2 Ren

Studies have shown that the empirical log-likelihood ratio usually has an asymptotic chi-

squared distribution, and that the empirical likelihood ratio inference is of comparable

accuracy to alternative methods. In particular, it is shown that the empirical likelihood is

Bartlett-correctable for smooth function models (DiCiccio, Hall and Romano, 1991).

However, we no longer have a smooth function model for censored data, such as right

censored data (Kaplan and Meier, 1958), doubly censored data (Turnbull, 1974; Gu and

Zhang, 1993) and partly interval-censored data (Huang, 1999), while it is known that

right censored data are frequently encountered in biomedical research or reliability studies,

and that doubly censored data have recently been encountered in breast cancer research

(Ren and Peer, 2000), and partly interval-censored data in heart disease (Odell, Anderson

and D’Agostino; 1992) and diabetes studies (Enevoldsen et al., 1987). Generally, the

empirical likelihood ratio does not have an analytic expression, which makes it difficult to

study its asymptotic properties and the coverage accuracy of the empirical likelihood-based

confidence intervals with censored data. So far, for censored data the available works based

on empirical likelihood include Thomas and Grunkemeir (1975), Li, Hollander, McKeague

and Yang (1996), Murphy and van der Vaart (1997), Banerjee and Wellner (2004), but none

of these contains any coverage accuracy results, and none of these deals with likelihood

inferences with partly interval-censored data.

Recently, Ren (2001) used a new likelihood function, called weighted empirical likelihood

function, to construct confidence intervals for the mean with various types of censored

data, including right censored data, doubly censored data, interval censored data and

partly interval-censored data. For different types of censored data, this weighted empirical

likelihood function is formulated in a unified form depending only upon the weights of

the nonparametric maximum likelihood estimator (NPMLE) F̂n for the underlying lifetime

distribution F0. Thus, the weighted empirical likelihood-based confidence intervals can be

computed by the same algorithm for any given F̂n, and their asymptotic properties can be

studied in a unified form through the weighted empirical log-likelihood ratio for different

types of censored data.

In this article, we derive the high-order expansion of the weighted empirical log-likelihood

ratio for survival probabilities with right censored data, doubly censored data and partly

interval-censored data, and we show that if the Lipschitz condition is satisfied for the distri-

bution of the leading term(s) of this expansion, the theoretical coverage accuracy equation

for the weighted empirical likelihood ratio confidence intervals (WELRCI) can be obtained.
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When there is no censoring, such Lipschitz condition is established in an example where a

smoothed F̂n based on the kernel density method is used. The implication of this example

is that it is possible to have the Lipschitz condition for censored data with an appropriate

smoothing of F̂n, thus the theoretical coverage accuracy equation above mentioned may

be used as guidance for selecting the order of the expansion in practice. Our simulation

results show that WELRCI for survival probabilities compare well with those empirical

likelihood-based methods and other alternative methods.

The rest of the paper is organized as follows: Section 2 introduces the weighted em-

pirical likelihood function with a review of the asymptotic properties of the NPMLE F̂n;

Section 3 constructs weighted empirical likelihood ratio confidence interval (WELRCI) for

survival probabilities, and discusses its theoretical coverage accuracy and the related Lip-

schitz condition aforementioned, while the proofs and the Lipschitz condition example are

deferred to the Appendix; Section 4 gives some simulation results with comparison between

WELRCI and those by alternative methods, and includes some concluding remarks.

2. Weighted empirical likelihood In Owen (1988), the empirical likelihood func-

tion is given by

L(F ) =
n∏

i=1

[F (Xi)− F (Xi−)], (2.1)

and the empirical likelihood ratio function is given by

R(F ) = L(F )/L(Fn), (2.2)

where F is any distribution function (d.f.), X1, . . . , Xn is a random sample from d.f. F0,

and the empirical d.f. Fn of sample X1, . . . , Xn is the nonparametric maximum likelihood

estimator (NPMLE) for F0; that is Fn maximizes L(F ) over all distribution functions F .

For each type of censored data aforementioned, the likelihood function has been given,

and the NPMLE F̂n is the solution which maximizes the likelihood function. See Mykland

and Ren (1996) for doubly censored data, which includes the right censored data as a

special case; and Huang (1999) for partly interval-censored data. As a general notation

for this paper, we let F̂n be the NPMLE of F0 based on the observed censored data, then

from observed data points there exist m distinct points W1 < W2 < · · · < Wm along with
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p̂
j

> 0, 1 ≤ j ≤ m, such that F̂n can be expressed as

F̂n(x) =
m∑

i=1

p̂
i
I{Wi ≤ x}, (2.3)

for right censored data (Kaplan and Meier, 1958), doubly censored data (Mykland and

Ren, 1996), and partly interval-censored data (Huang, 1999). In Ren (2001), the weighted

empirical likelihood function for censored data is given by

L̂(F ) =
m∏

i=1

[F (Wi)− F (Wi−)]np̂i , (2.4)

where F is any d.f., and Wi, p̂i
are as in (2.3). It is easy to show that L̂(F ) is maximized

at F̂n. Thus the weighted empirical likelihood ratio is given by

R̂(F ) = L̂(F )/L̂(F̂n). (2.5)

One may note that when there is no censoring, W1 < · · · < Wm in (2.3) are all distinct

observations in the random sample X1, . . . , Xn, thus the weighted empirical likelihood

function (2.4) coincides with the empirical likelihood function (2.1) by Owen (1988).

Remark 1. Asymptotic Results of NPMLE F̂n: Letting ‖ · ‖ stand for the uniform

norm, it is known that for F̂n given by (2.3), we have ‖F̂n − F0‖
a.s.−−→ 0 for right censored

data (Stute and Wang, 1993), doubly censored data (Gu and Zhang, 1993), and partly

interval-censored data (Huang, 1999), respectively. Also, it is shown that for each type

of these censored data, F̂n is of
√

n convergence rate; in fact, under certain conditions,
√

n (F̂n − F0) weakly converges to a centered Gaussian process (Gill, 1983; Gu and Zhang,

1993; Huang, 1999).

3. Confidence intervals for probabilities In survival analysis, it is often of in-

terest to construct confidence intervals for the survival probability (1 − θ0), where for a

constant t0 > 0,

θ0 = F0(t0) (3.1)

is the probability at t0 for the underlying lifetime distribution F0. In this section, we show

that set Sn = {F (t0) | R̂(F ) ≥ cn, F � F̂n} may be used as confidence interval for θ0

with right censored data, doubly censored data and partly interval-censored data, where
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constant 0 < cn < 1 is set by equation (3.9), and ‘F � F̂n’ means that F is absolutely

continuous with respect to F̂n.

First, note that the NPMLE F̂n for censored data is not always a proper d.f. (Mykland

and Ren, 1996), but in this work we always consider the adjusted version of the NPMLE,

still denoted as F̂n. Precisely, for the rest of this paper, F̂n in (2.3) denotes the proper

d.f. obtained by setting 1 as the value of the NPMLE at the largest observation in the

data set, which implies
∑m

i=1 p̂
i
= 1 in (2.3). This kind of adjustment of the NPMLE is a

generally adopted convention for censored data (Efron, 1967; Miller, 1976). Although this

F̂n in (2.3) no longer necessarily maximizes the underlying likelihood function, the usual

asymptotic properties of the NPMLE needed for this work still hold for this F̂n, because

the work here only concerns its asymptotic behavior around point t0.

To state our main results in this section, we let

r(θ) = sup

{
m∏

i=1

(p
i
/p̂

i
)np̂i

∣∣∣ m∑
i=1

p
i
I{Wi ≤ t0} = θ, p

i
≥ 0,

m∑
i=1

p
i
= 1

}
, (3.2)

where p
i

= F (Wi) − F (Wi−), 1 ≤ i ≤ m. In the Appendix, it is shown that Sn is an

interval satisfying Sn = [XL, XU ] and

XL ≤ θ0 ≤ XU if and only if r(θ0) ≥ cn, (3.3)

where 0 < θ0 < 1 and

XL = inf
{∑m

i=1 p
i
I{Wi ≤ t0}

∣∣∣ pi
≥ 0,

∑m
i=1 p

i
= 1,

∏m
i=1 (p

i
/p̂

i
)n p̂i ≥ cn

}
XU = sup

{∑m
i=1 p

i
I{Wi ≤ t0}

∣∣∣ pi
≥ 0,

∑m
i=1 p

i
= 1,

∏m
i=1 (p

i
/p̂

i
)n p̂i ≥ cn

}
.

(3.4)

We call [XL, XU ] weighted empirical likelihood ratio confidence interval (WELRCI) for θ0.

Since (3.3) implies

P{XL ≤ θ0 ≤ XU} = P{−2 log r(θ0) ≤ −2 log cn}, (3.5)

the asymptotic behavior of [XL, XU ] is studied through weighted empirical log-likelihood

ratio log r(θ0) in the following theorem with proofs deferred to the Appendix.

Theorem 3.1. Assume that n →∞,

√
n[F̂n(t0)− F0(t0)]

D−→ Z0
D
= N(0, σ2

0), (AS1)

F̂n(t0)
a.s.−−→ F0(t0). (AS2)
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Then for 0 < θ0 = F0(t0) < 1 and θ̂ = F̂n(t0),

(i) We have that for 0 < θ̂ < 1,

−2 log r(θ0) = B(k)
n + n(θ̂ − θ0)

k+3rn,k, (3.6)

where for fixed k, there exists a constant 1 ≤ Mr,k < ∞ such that |rn,k| ≤ Mr,k all but

finitely often with probability 1, and

B(k)
n =

n(θ̂ − θ0)
2

θ̂(1− θ̂)

(
1 +

∑k
j=1 âj(θ̂ − θ0)

j
)
, k = 1, 2, 3, 4 (3.7)

with

â1 =
2[(1− θ̂)2 − θ̂2]

3 θ̂ (1− θ̂)
, â2 =

[(1− θ̂)3 + θ̂3]

2 [θ̂ (1− θ̂)]2
, â3 =

2[(1− θ̂)4 − θ̂4]

5[θ̂ (1− θ̂)]3
, â4 =

[(1− θ̂)5 + θ̂5]

3[θ̂ (1− θ̂)]4
;

(ii) Assuming cn = O(1), we have that

P{XL ≤ θ0 ≤ XU} = P{B(k)
n ≤ −2 log cn}+ O(‖Gn,k −G0‖) + O(n−(k+1)/2), (3.8)

where Gn,k and G0 are the d.f.’s of B
(k)
n and Z2

0[θ0(1− θ0)]
−1, respectively.

In practice, we let ρ(k)
n, α be the (1 − α)100th percentile of B

(k)
n in (3.7) for 0 < α < 1,

then [X
(k)
L , X

(k)
U ] computed by (3.4) based on constant cn set by

−2 log cn = ρ(k)
n, α , (3.9)

is called the kth order weighted empirical likelihood ratio confidence interval (k-WELRCI)

for θ0. Thus, from (3.8)-(3.9) we have

P{X(k)
L ≤ θ0 ≤ X

(k)
U } = (1− α) + O(‖Gn,k −G0‖) + O(n−(k+1)/2). (3.10)

Remark 2. From Remark 1 in Section 2, we know that under certain conditions, (AS1)-

(AS2) hold for censored data under consideration here. It should be noted that for chi-

squared random variable (r.v.) χ2
1, (3.6)-(3.7) imply −2 log r(θ0)

D
≈ n(θ̂−θ0)

2[θ̂(1− θ̂)]−1 D
≈

σ2
0[θ0(1− θ0)]

−1χ2
1, which is a scaled chi-squared distribution. Thus, −2 log r(θ0) does not

have an asymptotic chi-squared distribution as in Thomas and Grunkemeir (1975) and

Murphy and van der Vaart (1997). It is known that having an asymptotic chi-squared

distribution indicates that the likelihood ratio (or the statistic of interest) is studentized
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(i.e., free of the underlying parameters of interest), in turn, usually the likelihood-based

method better catches the skewness of the distribution of the statistics of interest than

that based on asymptotic normality. Nonetheless, our simulation studies in Section 4

show that the k-WELRCI [X
(k)
L , X

(k)
U ] preserves this appealing feature of the empirical

likelihood method. The reason for this is as follows. Letting χ2
1,α be the (1 − α)100th

percentile of χ2
1, the fact of ρ(k)

n, α ≈ σ2
0[θ0(1 − θ0)]

−1χ2
1,α suggests us to adjust the weights

of the weighted empirical likelihood to studentize the likelihood ratio, i.e., replacing np̂
i

by σ−2
0 [θ0(1 − θ0)]np̂

i
in (3.2), then the consequent −2 log r(θ0) has an asymptotic chi-

squared distribution, in turn, −2 log cn should be set as χ2
1,α. To compute the confidence

interval based on this studentized likelihood ratio, we use (3.4) with weights np̂
i

replaced

by σ−2
0 [θ0(1− θ0)]np̂

i
, and we have

∏m
i=1(pi

/p̂
i
)σ−2

0 θ0(1−θ0)np̂i ≥ cn = exp{−1
2
χ2

1,α}, which is

equivalent to −2n
∑m

i=1 p̂
i
log(p

i
/p̂

i
) ≤ σ2

0[θ0(1−θ0)]
−1χ2

1,α ≈ ρ(k)
n, α . Thus, we know that the

resulting confidence interval is asymptotically the same as the k-WELRCI [X
(k)
L , X

(k)
U ]. This

could be viewed as that the use of ρ(k)
n, α in k-WELRCI procedure is actually studentizing

the weighted empirical likelihood ratio.

The Lipschitz Condition in (3.10):

From the proof of Theorem 1 (ii) in the Appendix, it is easy to see that if Gn,k satis-

fies the Lipschitz condition, term O(‖Gn,k − G0‖) in equation (3.8) or (3.10) disappears.

However, for θ̂ = F̂n(t0) the Lipschitz condition generally does not hold for Gn,k. For in-

stance, if there is no censoring, the NPMLE for the complete i.i.d. sample X1, . . . , Xn is

the empirical d.f. Fn, and the d.f. of
√

n (θ̂ − θ0) =
√

n[Fn(t0)− F0(t0)] is discrete. Thus,

from (3.7) it is easy to see that Gn,k does not satisfy the Lipschitz condition when there

is no censoring. This leads us to consider using a smoothed version of the NPMLE F̂n in

Theorem 1 in order to eliminate term O(‖Gn,k −G0‖) in (3.8).

Specifically, let F̃ be a continuous d.f. which is the continuous version of a discrete

d.f. F according to a given smoothing method. For instance, F̃ could be obtained by

simply connecting the jump points of F through straight lines, or by the kernel density

method which is discussed in the Appendix. Let F̃n be the smoothed version of F̂n, and let

θ̃ = F̃n(t0). Then, with minor modification of the proof of Theorem 1, we have (3.6) for

using the smoothed F̃ in (3.2), where B
(k)
n is replaced by

B̃(k)
n =

n(θ̃ − θ0)
2

µ̃2

(
1 +

k∑
j=1

ãj(θ̃ − θ0)
j

)
, k = 1, 2, 3, 4, (3.11)
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with ãj’s calculated according to smoothed F̃ in (3.2). Moreover, if G̃n,k is the d.f. of B̃
(k)
n

and satisfies the following Lipschitz condition:

|G̃n,k(x)− G̃n,k(y)| ≤ Mk|x− y|, (AS3)

for all x and y in some neighborhood of cn, the proof of Theorem 1 (ii) gives

P{X̃L ≤ θ0 ≤ X̃U} = P{B̃(k)
n ≤ −2 log cn}+ O(n−(k+1)/2), (3.12)

where [X̃
(k)
L , X̃

(k)
U ] is the k-WELRCI based on above mentioned smoothing.

However, verifying (AS3) can be quite involved. In the Appendix, an example of smooth-

ing based on the kernel density method is discussed, where (AS3) is established up to a

remainder term converging to 0 in exponential rate when there is no censoring. The impli-

cation of this example is that it is possible to have (AS3) and (3.12) for censored data with

an appropriate smoothing of F̂n, thus the theoretical coverage accuracy equation (3.12) may

be used as guidance for the selection of k in practice.

Remark 3. Choice of k: If the complete random sample X1, . . . , Xn is available,

then with k = 4 in (3.12), the theoretical coverage accuracy is O(n−5/2). We know that

the coverage accuracy with Bartlett-correction is only O(n−2) for smooth function models

(DiCiccio, Hall and Romano, 1991). Thus, the use of the 4th order (not higher) expansion

of the log-likelihood ratio in Theorem 1 or (3.12) for censored data is usually sufficient.

Moreover, since the coverage accuracy of empirical likelihood-based confidence intervals is

Op(n
−1) for non-censored data (DiCiccio, Hall and Romano; 1991), in practice we suggest

that the use of k = 2 in (3.12) or (3.8) should be sufficient.

4. Simulation Since the WELRCI based on smoothing through the kernel density

method involves issues such as band-width selection, we do not consider them here. In

this section, we present some simulation results on Theorem 1. Since this problem was

considered by Thomas and Grunkemeir (1975) for right censored data, denoted as TGCI,

we make comparisons between WELRCI and TGCI. Moreover, other procedures such as

bootstrap-t confidence interval and bootstrap percentile confidence interval (BPCI) (Efron

and Tibshirani, 1993), are also considered in our studies. We find that bootstrap-t performs

erratically, thus the results using bootstrap-t are not included here. As follows, we discuss

some computational issues on WELRCI, then present some simulation results.
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Here, we compute k-WELRCI [X
(k)
L , X

(k)
U ] by solving the corresponding optimization

problems in (3.4), where ρ(k)
n, α in (3.9) is estimated by the n out of n bootstrap method.

Specifically, ρ(k)
n, α is estimated by the (1− α)100th percentile of

B(k)∗
n =

n(θ̂∗ − θ̂)2

θ̂(1− θ̂)

(
1 +

k∑
j=1

âj(θ̂
∗ − θ̂)j

)
, (4.1)

where θ̂∗ = F̂ ∗
n(t0) is based on a bootstrap sample of size n. Noting that the right censored

sample is a special case of doubly censored sample, from Proposition 2.1 of Bickel and Ren

(1996) we know that the distribution of
√

n(θ̂−θ0) =
√

n[F̂ (t0)−F0(t0)] can be consistently

estimated by that of
√

n[F̂ ∗
n(t0)− F̂n(t0)] for right censored data and doubly censored data.

This bootstrap consistency also holds for partly interval-censored data as shown in Huang

(1999). Since B
(k)
n in (3.7) is a ‘polynomial’ in

√
n(θ̂ − θ0), we know that B

(k)∗
n in (4.1)

provides consistent estimate for ρ(k)
n, α .

Let Exp(µ) represent the exponential distribution function with mean µ. In Table 1,

1000 right censored samples of size n = 100 with Vi = min{Xi, Yi}, δi = I{Xi ≤ Yi}, 1 ≤
i ≤ n, are taken from exponential distributions, and for each sample, 90% k-WELRCI,

TGCI and BPCI for θ0 with different t0 are computed, where 400 bootstrap samples of

size n = 100 are used for BPCI and for estimating ρ(k)
n, α in (3.9) to construct k-WELRCI.

Simulation coverages are included in Table 1, and the simulation standard deviation of the

length of C.I. is given in the parenthesis next to the average length of C.I.. The same

studies in Table 1 are repeated in Table 2 with n = 50.

TABLES

Table 1. 90% Confidence Interval for θ0 = F0(t0) with Exponential Right Censored Data

Sample Size n = 100 with X ∼ Exp(1), Y ∼ Exp(3); Percentage of δ: δ = 1 : 75.0%; δ = 0 : 25.0%
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t0 & θ0 Method % Coverage % Miss Left % Miss Right Average Length (S.D.)

t0 = 0.500 1-WELRCI 89.8 5.3 4.9 0.16634 (0.00819)

θ0 = 0.393 2-WELRCI 90.1 5.2 4.7 0.16781 (0.00827)

TGCI 90.0 5.4 4.6 0.16652 (0.00468)

BPCI 89.8 6.4 3.8 0.16798 (0.00819)

t0 = 1.000 1-WELRCI 90.1 5.6 4.3 0.17164 (0.00962)

θ0 = 0.632 2-WELRCI 90.6 5.2 4.2 0.17367 (0.00968)

TGCI 91.2 5.2 3.6 0.17269 (0.00628)

BPCI 88.9 8.1 3.0 0.17349 (0.00984)

t0 = 1.500 1-WELRCI 89.1 6.0 4.9 0.15465 (0.01530)

θ0 = 0.777 2-WELRCI 90.4 5.1 4.5 0.15981 (0.01448)

TGCI 89.8 5.6 4.6 0.15749 (0.01240)

BPCI 87.6 9.9 2.5 0.15811 (0.01507)

t0 = 2.000 1-WELRCI 84.3 11.0 4.7 0.13223 (0.04557)

θ0 = 0.865 2-WELRCI 88.6 7.3 4.1 0.14415 (0.04459)

TGCI 88.0 7.8 4.2 0.13700 (0.01965)

BPCI 82.5 15.5 2.0 0.13658 (0.02521)

Table 2. 90% Confidence Interval for θ0 = F0(t0) with Exponential Right Censored Data

Sample Size n = 50 with X ∼ Exp(1), Y ∼ Exp(3); Percentage of δ: δ = 1 : 74.8%; δ = 0 : 25.2%

t0 & θ0 Method % Coverage % Miss Left % Miss Right Average Length (S.D.)

t0 = 0.500 1-WELRCI 90.2 3.9 5.9 0.23146 (0.01438)

θ0 = 0.393 2-WELRCI 91.5 3.6 4.9 0.23567 (0.01439)

TGCI 90.9 3.9 5.2 0.23192 (0.00993)

BPCI 90.6 5.4 4.0 0.23544 (0.01446)

t0 = 1.000 1-WELRCI 88.0 6.5 5.5 0.23904 (0.01801)

θ0 = 0.632 2-WELRCI 89.8 5.2 5.0 0.24524 (0.01751)

TGCI 89.0 5.7 5.3 0.24138 (0.01309)

BPCI 87.0 9.9 3.1 0.24389 (0.01824)

t0 = 1.500 1-WELRCI 89.4 6.1 4.5 0.21267 (0.03234)

θ0 = 0.777 2-WELRCI 92.1 4.1 3.7 0.22948 (0.03068)

TGCI 91.6 4.1 4.3 0.22039 (0.02447)

BPCI 87.5 11.0 1.5 0.22239 (0.03407)

t0 = 2.000 1-WELRCI 92.3 3.6 4.1 0.19973 (0.14166)

θ0 = 0.865 2-WELRCI 95.4 1.5 3.1 0.22387 (0.13986)

TGCI 90.5 5.8 3.7 0.19158 (0.03878)

BPCI 80.6 18.5 0.9 0.17454 (0.05931)

From Tables 1-2, we see that for right censored data, WELRCI and TGCI have similar

performances, while BPCI performs poorly when θ0 is near either 0 or 1. Also, we see

that 1-WELRCI and 2-WELRCI perform similarly, though 2-WELRCI seems preferred for

larger t0. Our extensive simulation studies for other distributions have similar performance.
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Moreover, it is worth noting that simulation results show that the likelihood-based confi-

dence intervals, WELRCI or TGCI, usually have miscoverage on both sides more evenly

than the bootstrap percentile method. This indicates that the likelihood-based method bet-

ter catches the skewness of the distribution of the statistics of interest, and the weighted

empirical likelihood method, with its evident generality in formulation and computation,

preserves this appealing feature of the empirical likelihood method.

Concluding Remarks:

It should be noted that (3.10) does not necessarily give the exact coverage accuracy due

to the techniques we used in our proofs, but it generally guarantees the likelihood-based

confidence intervals to have at least ‘the first order’ accuracy for different types of censored

data as long as the convergence rate of Gn,k is
√

n. From the example of smoothing F̂n based

on the kernel density method, we know that with smoothing of F̂n, the Lipschitz condition

may hold for θ̃, in turn, we have the stronger theoretical coverage accuracy equation (3.12),

which obviously indicates that the practical coverage accuracy of WELRCI boils down to

the accuracy of the bootstrap method, or the accuracy of the estimation for the percentiles

of B
(k)
n or B̃

(k)
n by any other methods. Thus, a more sophisticated bootstrap procedure,

such as in Hall (1992) or Efron and Tibshirani (1993), might be applicable to obtain better

coverage accuracy than O(n−1/2). This will be studied in a separate forthcoming paper.

Finally, we note that the use of smoothing can give shorter confidence intervals; see Ren

(2005).

5. Appendix Proof of (3.3). First, we notice that Sn can be expressed as

Sn =
{

τ(p)
∣∣ p = (p

1
, . . . , pm) ∈ Ec

}
, (A.1)

where Ec = {p | p
i
≥ 0,

∑m
i=1 p

i
= 1,

∏m
i=1 (p

i
/p̂

i
)np̂i ≥ c} is a compact and convex set in

Rm, and τ(p) =
∑m

i=1 p
i
I{Wi ≤ t0} is a continuous function in p. From Royden (1968,

page 158-159), we know that Sn is a compact set in R. Since convexity implies connectivity,

from Royden (1968, page 152-153) we know that Sn is either an interval or a single point.

Since Sn is compact, we know that Sn must be a closed interval [XL, XU ] with XL and XU

given by (3.4). To show (3.3), we let E0 = {p | τ(p) = θ0, p
i
≥ 0,

∑m
i=1 p

i
= 1}, thus we

have

r(θ0) = sup
{ m∏

i=1

(p
i
/p̂

i
)np̂i

∣∣∣ p ∈ E0

}
. (A.2)
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Assume r(θ0) ≥ c. Since τ is continuous and {p | p
i
≥ 0,

∑m
i=1 p

i
= 1} is a compact

set, we know that E0 is compact and E0 is not empty. Thus, (A.2) and (3.4) imply

XL ≤ θ0 ≤ XU .

Assume XL ≤ θ0 ≤ XU . Since τ is continuous with XL and XU as the lower and

upper bound on compact set Ec, respectively, we know that from The Intermediate Value

Theorem, there exists q ∈ Ec such that τ(q) = θ0. Thus, (A.2) implies r(θ0) ≥ c. �

Proof of Theorem 1 (i). To get an expression for r(θ0) in (3.2), using the Lagrange

multiplier it is easy to obtain

log r(θ0) = −n
m∑

i=1

p̂
i
log[1 + λ0(Ui − θ0)], (A.3)

where Ui = I{Wi ≤ t0}, and λ0 is the unique solution in (− 1
1−θ0

, 1
θ0

) of equation:

g(λ) ≡
m∑

i=1

p̂
i
(Ui − θ0)

1 + λ(Ui − θ0)
= 0. (A.4)

To study the asymptotic behavior of λ0, we notice that in (A.3)-(A.4), we have that

g(λ0) = 0 and g(0) = θ̂ − θ0, which give

−(θ̂ − θ0) = g(λ0)− g(0) = g′(ξ)λ0 = −λ0

m∑
i=1

p̂
i
(Ui − θ0)

2

[1 + ξ(Ui − θ0)]2
, (A.5)

where |ξ| ≤ |λ0|. From [1 + ξ(Ui − θ0)]
2 ≤ (1 + |λ0|)2, we have

|θ̂ − θ0| = |λ0|
m∑

i=1

p̂
i
(Ui − θ0)

2

[1 + ξ(Ui − θ0)]2
≥ |λ0|

n∑
i=1

p̂
i
(Ui − θ0)

2

(1 + |λ0|)2
,

in turn, from |λ0| ≤ max{ 1
1−θ0

, 1
θ0
} we have

|λ0|µ̂2 ≤ |θ̂ − θ0|(1 + |λ0|)2 ≤ |θ̂ − θ0|
(
1 + max

{ 1

1− θ0

,
1

θ0

})2

,

where for θ̂ = F̂n(t0) =
∑m

i=1 p̂
i
Ui,

µ̂k =
∑m

i=1p̂i
(Ui − θ0)

k and µ̃k =
∑m

i=1p̂i
(Ui − θ̂)k, (A.6)

and straightforward calculation gives

µ̃2 = θ̂(1− θ̂), µ̃3 = θ̂(1− θ̂)[(1− θ̂)2 − θ̂2], µ̃4 = θ̂(1− θ̂)[(1− θ̂)3 + θ̂3],

µ̃5 = θ̂(1− θ̂)[(1− θ̂)4 − θ̂4], µ̃6 = θ̂(1− θ̂)[(1− θ̂)5 + θ̂5],
(A.7)
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and

µ̂2 = µ̃2 + (θ̂ − θ0)
2, µ̂3 = µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)

3,

µ̂4 = µ̃4 + 4(θ̂ − θ0)µ̃3 + 6(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4, (A.8)

µ̂5 = µ̃5 + 5(θ̂ − θ0)µ̃4 + 10(θ̂ − θ0)
2µ̃3 + 10(θ̂ − θ0)

3µ̃2 + (θ̂ − θ0)
5,

µ̂6 = µ̃6 + 6(θ̂ − θ0)µ̃5 + 15(θ̂ − θ0)
2µ̃4 + 20(θ̂ − θ0)

3µ̃3 + 15(θ̂ − θ0)
4µ̃2 + (θ̂ − θ0)

6.

Thus, from

0 < min{θ2
0, (1− θ0)

2} ≤ µ̂2 ≤ 1, (A.9)

we know that (AS2) and Theorem 4.2.2 of Chung (1974) imply that with probability 1,

|λ0| ≤ M−1
λ |θ̂ − θ0| ≤ 1

2 (A.10)

all but finitely often, where Mλ = min{θ2
0, (1− θ0)

2}(1 + max{ 1
1−θ0

, 1
θ0
})−2. The rest of the

proof is established under (A.10), which along with (AS2) gives

λ0
a.s.−−→ 0, as n →∞. (A.11)

To avoid overly messy algebra, we will establish (3.6)-(3.7) for k = 1, while the method

can easily be used for the case of k = 4.

Let h = g−1, then g(λ0) = 0 and g(0) = (θ̂ − θ0) imply h(0) = λ0 and h(θ̂ − θ0) = 0,

respectively. Moreover, we have

h′(θ̂ − θ0) =
1

g′(0)
= − 1

µ̂2

, h′′(θ̂ − θ0) = − g′′(0)

[g′(0)]3
=

2µ̂3

µ̂3
2

,

h′′′(y) =
3[g′′(x)]2 − g′(x)g′′′(x)

[g′(x)]5
, where x = h(y) (A.12)

and from Taylor’s expansion,

λ0 = h(0) = h(θ̂ − θ0)− h′(θ̂ − θ0)(θ̂ − θ0) + 1
2h′′(θ̂ − θ0)(θ̂ − θ0)

2 − 1
6h′′′(ξ)(θ̂ − θ0)

3

=
(θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh, (A.13)
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where Rh = −1
6
h′′′(ξ)(θ̂ − θ0)

3 with |ξ| ≤ |θ̂ − θ0| satisfying η = h(ξ) and |η| ≤ |λ0|. Since

µ̂2

(1 + |λ0|)2
≤ |g′(η)| =

m∑
i=1

p̂
i
(Ui − θ0)

2

[1 + η(Ui − θ0)]2
≤ 1

(1− |λ0|)2
,

|g′′(η)| = 2
∣∣∣ m∑

i=1

p̂
i
(Ui − θ0)

3

[1 + η(Ui − θ0)]3

∣∣∣ ≤ 2

(1− |λ0|)3
,

|g′′′(η) = 6
m∑

i=1

p̂
i
(Ui − θ0)

4

[1 + η(Ui − θ0)]4
≤ 6

(1− |λ0|)4
,

then from (A.9)-(A.10) there exists a constant Mh such that

|Rh| = 1
6 |θ̂ − θ0|3

∣∣∣3[g′′(η)]2 − g′(η)g′′′(η)

[g′(η)]5

∣∣∣ ≤ Mh|θ̂ − θ0|3. (A.14)

From Taylor’s expansion, in (A.3) we have

−2 log r(θ0) = 2n
m∑

i=1

p̂
i
log(1 + λ0(Ui − θ0)) = 2n

m∑
i=1

p̂
i

{
λ0(Ui − θ0)

− 1
2 [λ0(Ui − θ0)]

2 + 1
3 [λ0(Ui − θ0)]

3 − 1
4(1 + ζi)

−4[λ0(Ui − θ0)]
4
}

= 2n
{

λ0(θ̂ − θ0)− 1
2λ2

0µ̂2 + 1
3λ3

0µ̂3

}
+ R1, (A.15)

where |ζi| ≤ |λ0(Ui− θ0)| ≤ |λ0| and R1 = −1
2
n
∑m

i=1 p̂
i
(1+ ζi)

−4[λ0(Ui− θ0)]
4. Easily, from

(A.10) we know that

|R1| ≤ 1
2n(1− |λ0|)−4|θ̂ − θ0|4M−4

λ ≤ 8n|θ̂ − θ0|4M−4
λ . (A.16)

From (A.13), we have in (A.15)

−2 log r(θ0)−R1 = 2n
{

λ0(θ̂ − θ0)− 1
2λ2

0µ̂2 + 1
3λ3

0µ̂3

}
= 2n

{
(θ̂ − θ0)

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh

)
− 1

2 µ̂2

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh

)2

+ 1
3 µ̂3

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh

)3}
= 2n

{(θ̂ − θ0)
2

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
3 + (θ̂ − θ0)Rh
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− 1
2 µ̂2

((θ̂ − θ0)
2

µ̂2
2

+
µ̂2

3

µ̂6
2

(θ̂ − θ0)
4 + R2

h + 2
µ̂3

µ̂4
2

(θ̂ − θ0)
3

+ 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))

+ 1
3 µ̂3

(θ̂ − θ0)
3

µ̂3
2

+ 1
3 µ̂3

(θ̂ − θ0)

µ̂2

( µ̂2
3

µ̂6
2

(θ̂ − θ0)
4 + R2

h + 2
µ̂3

µ̂4
2

(θ̂ − θ0)
3

+ 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))

+ 1
3 µ̂3

( µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh

)((θ̂ − θ0)
2

µ̂2
2

+
µ̂2

3

µ̂6
2

(θ̂ − θ0)
4 + R2

h

+ 2
µ̂3

µ̂4
2

(θ̂ − θ0)
3 + 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))}

= 2n
{(θ̂ − θ0)

2

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
3 − 1

2
(θ̂ − θ0)

2

µ̂2

− µ̂3

µ̂3
2

(θ̂ − θ0)
3 + 1

3 µ̂3
(θ̂ − θ0)

3

µ̂3
2

}
+ R2

=
n(θ̂ − θ0)

2

µ̂2

(
1 +

2µ̂3

3µ̂2
2

(θ̂ − θ0)
)

+ R2, (A.17)

where

R2 = 2n
{

(θ̂ − θ0)Rh − 1
2 µ̂2

( µ̂2
3

µ̂6
2

(θ̂ − θ0)
4 + R2

h + 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))

+ 1
3 µ̂3

(θ̂ − θ0)

µ̂2

( µ̂2
3

µ̂6
2

(θ̂ − θ0)
4 + R2

h + 2
µ̂3

µ̂4
2

(θ̂ − θ0)
3 + 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))

+ 1
3 µ̂3

( µ̂3

µ̂3
2

(θ̂ − θ0)
2 + Rh

)((θ̂ − θ0)
2

µ̂2
2

+
µ̂2

3

µ̂6
2

(θ̂ − θ0)
4 + R2

h + 2
µ̂3

µ̂4
2

(θ̂ − θ0)
3

+ 2Rh

((θ̂ − θ0)

µ̂2

+
µ̂3

µ̂3
2

(θ̂ − θ0)
2
))}

.

Since (A.6) implies |µ̂3| ≤ 1, thus (A.9) and (A.14) imply

|R2| ≤ n|θ̂ − θ0|4MR2 , where MR2 is a constant. (A.18)

Note that Taylor’s expansion and (A.8) give

1

µ̂2

=
1

µ̂2

{
1− (θ̂ − θ0)

2

µ̃2(1 + η)2

}
, where |η| ≤ µ̃−1

2 |θ̂ − θ0|2. (A.19)

Thus, to express µ̂j’s of the leading term of (A.17) in terms of µ̃j’s, (A.8) gives
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−2 log r(θ0)−R1 −R2 =
n(θ̂ − θ0)

2

µ̂2

(
1 +

2µ̂3

3µ̂2
2

(θ̂ − θ0)
)

=
n(θ̂ − θ0)

2

µ̃2

{
1− (θ̂ − θ0)

2

µ̃2(1 + η)2

}
×
{

1 +
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
1− (θ̂ − θ0)

2

µ̃2(1 + η)2

)2}
=

n(θ̂ − θ0)
2

µ̃2

{
1− (θ̂ − θ0)

2

µ̃2(1 + η)2

}{
1 +

2µ̃3

3µ̃2
2

(θ̂ − θ0) +
2

3µ̃2
2

[3(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4]

+
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
− 2(θ̂ − θ0)

2

µ̃2(1 + η)2
+

(θ̂ − θ0)
4

µ̃2
2(1 + η)4

)}
=

n(θ̂ − θ0)
2

µ̃2

{
1 +

2µ̃3

3µ̃2
2

(θ̂ − θ0) +
2

3µ̃2
2

[3(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4]

+
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
− 2(θ̂ − θ0)

2

µ̃2(1 + η)2
+

(θ̂ − θ0)
4

µ̃2
2(1 + η)4

)
− (θ̂ − θ0)

2

µ̃2(1 + η)2

{
1 +

2µ̃3

3µ̃2
2

(θ̂ − θ0) +
2

3µ̃2
2

[3(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4] (A.20)

+
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
− 2(θ̂ − θ0)

2

µ̃2(1 + η)2
+

(θ̂ − θ0)
4

µ̃2
2(1 + η)4

)}}
=

n(θ̂ − θ0)
2

µ̃2

(
1 +

2µ̃3

3µ̃2
2

(θ̂ − θ0)
)

+ R3,

where

R3 =
n(θ̂ − θ0)

2

µ̃2

{ 2

3µ̃2
2

[3(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4]

+
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
− 2(θ̂ − θ0)

2

µ̃2(1 + η)2
+

(θ̂ − θ0)
4

µ̃2
2(1 + η)4

)
− (θ̂ − θ0)

2

µ̃2(1 + η)2

{
1 +

2µ̃3

3µ̃2
2

(θ̂ − θ0) +
2

3µ̃2
2

[3(θ̂ − θ0)
2µ̃2 + (θ̂ − θ0)

4]

+
2

3µ̃2
2

(θ̂ − θ0)[µ̃3 + 3(θ̂ − θ0)µ̃2 + (θ̂ − θ0)
3]
(
− 2(θ̂ − θ0)

2

µ̃2(1 + η)2
+

(θ̂ − θ0)
4

µ̃2
2(1 + η)4

)}}
.

Note that (A.10) implies 0 < (θ0 − 1
2
Mλ) ≤ θ̂ ≤ (θ0 + 1

2
Mλ) < 1. Thus, (A.7) gives

µ̃2 = θ̂(1− θ̂) ≥
(
θ0 − 1

2Mλ

)(
1− θ0 − 1

2Mλ

)
> 0 (A.21)
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and |µ̃3| ≤ 1. Hence, from |η| ≤ µ̃−1
2 |θ̂ − θ0|2 ≤ 1

4
M2

λ [(θ0 − 1
2
Mλ)(1− θ0 − 1

2
Mλ)]

−1 < 1, we

know that there exists a constant MR3 such that

|R3| ≤ n|θ̂ − θ0|4MR3 . (A.22)

Note that from (A.7), we have â1 = (2µ̃3)/(3µ̃
2
2) = 2[(1− θ̂)2− θ̂2]/[3θ̂(1− θ̂)]. Since (A.16),

(A.18) and (A.22) are established under (A.10), hence (A.20) implies (3.6)-(3.7) for case

k = 1, where under (A.10) we have that for some constant Mr,k ≥ 1,

|rn,k| ≤ Mr,k. � (A.23)

Proof of Theorem 1 (ii). Noting that (AS2) implies 0 < θ̂ < 1 almost surly, from

(3.3) and (3.6) we have that for c̃n = −2 log cn,

P{XL ≤ θ0 ≤ XU} = P{XL ≤ θ0 ≤ XU , 0 < θ̂ < 1}

= P{−2 log r(θ0) ≤ −2 log cn, 0 < θ̂ < 1}

= [P{B(k)
n + n(θ̂ − θ0)

k+3rn,k ≤ c̃n} − P{B(k)
n ≤ c̃n}] + P{B(k)

n ≤ −2 log cn}.
(A.24)

If we let Û =
√

n(θ̂ − θ0)[θ̂(1− θ̂)]−1/2, then straightforward algebra gives

B(k)
n = Û2 + q

k
(Û , θ̂), for k = 1, 2, 3, 4 (A.25)

with q
k
(Û , θ̂) = Û2

∑k
i=1 âi(θ̂ − θ0)

i. Thus, in (A.24) we have

|P{B(k)
n + n(θ̂ − θ0)

k+3rn,k ≤ c̃n} − P{B(k)
n ≤ c̃n}|

= |P{B(k)
n + Û2(θ̂ − θ0)

k+1µ̃2rn,k ≤ c̃n} − P{B(k)
n ≤ c̃n}|

= |P{Û2 + q
k
(Û , θ̂) + Û2(θ̂ − θ0)

k+1µ̃2rn,k ≤ c̃n} − P{Û2 + q
k
(Û , θ̂) ≤ c̃n}|

≤ P{c̃n − |θ̂ − θ0|k+1|r̄n,k|Û2 ≤ Û2 + q
k
(Û , θ̂) ≤ c̃n + |θ̂ − θ0|k+1|r̄n,k|Û2}, (A.26)

where r̄n,k = µ̃2 rn,k. Note that for Mr,k ≥ 1 in (3.6) and Mλ in (A.10), Theorem 4.2.2 of

Chung (1974) and (AS2) imply that with probability 1,

|θ̂ − θ0| ≤ 1
2MλM

−1
r,k

(
θ0 − 1

2Mλ

)(
1− θ0 − 1

2Mλ

)
(A.27)

all but finitely often. Thus, under (A.27) and (A.21) we can show

Û2 + q
k
(Û , θ̂) ≥ Û2Aλ, k = 0, 1, . . . , 4, (A.28)
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where Aλ > 0 is a constant and q
0
(Û , θ̂) = 0. Since (A.27) implies (A.10), thus from µ̃2 ≤ 1

and (A.23) we know that Û2 + q
k
(Û , θ̂) ≤ c̃n + |θ̂ − θ0|k+1|r̄n,k|Û2 implies

Û2Aλ ≤ Û2 + q
k
(Û , θ̂) ≤ c̃n + |θ̂ − θ0|k+1Û2Mr,k, (A.29)

in turn, from (A.27) we have (
Aλ − 1

2Mλ

)
Û2 = B2

λÛ
2 ≤ c̃n, (A.30)

where Bλ =
√

1− 53
60

Mλ. Since Û2 ≤ B−2
λ c̃n implies

|Û | ≤
√

c̃n/Bλ ⇒ |
√

n(θ̂ − θ0)| ≤
√

c̃n/Bλ, (A.31)

then (3.8) follows from (A.24), (A.26), (A.23), (A.29)-(A.31), (AS3), c̃n = O(1) and

|P{B(k)
n + n(θ̂ − θ0)

k+3rn,k ≤ c̃n} − P{B(k)
n ≤ c̃n}|

≤ P{c̃n −B−2
λ c̃nMr,k|θ̂ − θ0|k+1 ≤ Û2 + q

k
(Û , θ̂) ≤ c̃n + B−2

λ c̃nMr,k|θ̂ − θ0|k+1}

≤ P{c̃n −B−2
λ c̃nMr,k(

√
c̃n/Bλ)

k+1n−(k+1)/2 ≤ Û2 + q
k
(Û , θ̂)

≤ c̃n + B−2
λ c̃nMr,k(

√
c̃n/Bλ)

k+1n−(k+1)/2}

= Gn,k(c̃n + B−2
λ c̃nMr,k(

√
c̃n/Bλ)

k+1n−(k+1)/2)

−Gn,k(c̃n −B−2
λ c̃nMr,k(

√
c̃n/Bλ)

k+1n−(k+1)/2)

≤ 2‖Gn,k −G0‖+ 2‖G′
0‖B−2

λ c̃nMr,k(
√

c̃n/Bλ)
k+1n−(k+1)/2. �

Smoothing by the Kernel Density Method. Here we study the assumptions re-

quired for the theoretical coverage accuracy equation (3.12) in this example. Let hn > 0

satisfy

hn → 0, nhn →∞,
√

n hn = O(1), as n →∞. (A.32)

For the NPMLE F̂n with censored data or complete i.i.d. sample, the kernel density esti-

mator for the bounded density f
0

of F0 is given by

f̂n(x) =
1

hn

m∑
i=1

p̂
i
K
(x−Wi

hn

)
=

1

hn

∫ ∞

−∞
K
(x− t

hn

)
dF̂n(t), (A.33)

where K is a density function. Thus, we have∫ ∞

−∞
f̂n(x) dx =

1

hn

m∑
i=1

p̂
i

∫ ∞

−∞
K
(x−Wi

hn

)
dx =

1

hn

m∑
i=1

p̂
i

∫ ∞

−∞
K(y)hn dy = 1,
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and the smoothed versions of F̂n and Fp(x) =
∑m

i=1 p
i
I{Wi ≤ x} in (3.11) are given by

F̃n(t) =

∫ t

−∞
f̂n(x) dx =

∫ ∞

−∞
F̂n(t− hnu)K(u) du, (A.34)

and

F̃p(t) =
1

hn

∫ t

−∞

∫ ∞

−∞
K
(x− u

hn

)
dFp(u) dx =

m∑
i=1

p
i
FK

(t−Wi

hn

)
(A.35)

respectively, where FK is the d.f. for p.d.f. K. In turn, we have

θ̃ = F̃n(t0) =
∫∞
−∞ F̂n(t0 − hnu)K(u)du =

∑m
i=1 p̂

i
Ui,

τ(p) ≡ F̃p(t0) =
∑m

i=1 p
i
Ui,

(A.36)

where p = (p1 , . . . , pm), and here we have Ui = FK((t0 −Wi)/hn) satisfying 0≤ Ui ≤ 1.

In this study, we consider kernel K(x) = 1
2
I{|x| ≤ 1}. Thus, FK is strictly increasing

on interval (−1, 1), and FK(x) = 0 if x ≤ −1; 1, if x ≥ 1. This gives

U(m) = FK((t0 −W1)/hn) = 1 ⇔ W1 ≤ t0 − hn,

U(1) = FK((t0 −Wm)/hn) = 0 ⇔ Wm ≥ t0 + hn.
(A.37)

Assuming the support of Wi is (0, ∞), we know that W1
a.s.−−→ 0 and Wm

a.s.−−→∞, as n →∞,

in turn, we have that U(1) = 0 and U(m) = 1 all but finitely often with probability 1. Also,

note that (A.36), the Dominated Convergence Theorem (DCT) and ‖F̂n − F0‖
a.s.−−→ 0 (see

Remark 1) give

θ̃ =

∫ ∞

−∞
[F̂n(t0 − hnu)− F0(t0 − hnu)]K(u) du +

∫ ∞

−∞
F0(t0 − hnu)K(u) du

= oa.s.(1) +

∫ ∞

−∞
F0(t0)K(u)du = oa.s.(1) + θ0, (A.38)

where oa.s.(1) converges to 0 with probability 1, and similarly by (A.36), here we have

µ̃2 =
m∑

i=1

p̂
i
(Ui − θ̃)2 =

m∑
i=1

p̂
i
U2

i − θ̃2

=

∫ ∞

−∞

∫ ∞

−∞
F̂n((t0 − hnu) ∧ (t0 − hnv))K(u)K(v) du dv − θ̃2

= oa.s.(1) +

∫ ∞

−∞

∫ ∞

−∞
F0(t0)K(u)K(v) du dv − θ2

0 = oa.s.(1) + θ0(1− θ0). (A.39)
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Hence, we know that (AS2) holds for F̃n.

Moreover, we have that from (A.32) and (A.36),

√
n(θ̃ − θ0) =

√
n
(∫ ∞

−∞
F̂n(t0 − hnu)K(u) du−

∫ ∞

−∞
F0(t0)K(u) du

)
=
√

n

∫ ∞

−∞
[F̂n(t0 − hnu)− F0(t0 − hnu)]K(u) du

+
√

n

∫ ∞

−∞
[F0(t0 − hnu)− F0(t0)]K(u) du

= Op(1) +
√

n

∫ ∞

−∞
f

0
(ξ)hnuK(u) du = Op(1), (A.40)

where ξ is between (t0−hnu) and t0, because
√

n(F̂n−F0) converges to a centered Gaussian

process (see Remark 1). Thus, (AS1) holds.

For this example, (AS3) may hold, but the proof in general case is very difficult. Here

we show that it holds for the complete i.i.d. sample: X1, X2, . . . , Xn. Without loss of the

generality, we assume that Xi’s are all distinct. First, we study the d.f. FY of

Y =
√

n(θ̃ − θ0), (A.41)

then we establish (AS3) with a remainder term converging to 0 in exponential rate. It

should be noted that this, along with a proof similar to that of Theorem 1 (ii), gives (3.12)

for case k = 0, and the general case of (3.12) can be established similarly.

Note that from (A.36) and (A.41), here we have

Y =
√

n
(
n−1

n∑
i=1

FK

(t0 −Xi

hn

)
− θ0

)
=
√

n
(
n−1

n∑
i=1

Xni − θ0

)
, (A.42)

where Xni = FK((t0 −Xi)/hn). It is easy to show that the d.f. Gn of Xni is given by

Gn(x) =


0 if x < 0

1− F0(t0 − hnF
−1
K (x)) if 0 < x < 1

1 if x ≥ 1.

(A.43)

Thus, Gn is continuous on its support (0, 1) with jump sizes at x = 0 and x = 1 as

c0 = 1− F0(t0 + hn) and c1 = F0(t0 − hn), (A.44)
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respectively, because F−1
K (y) = 2y − 1 for 0 < y < 1. Moreover, the derivative gn of Gn is

gn(x) =

{
2hnf0

(t0 + hn − 2hnx) for 0 < x < 1

0 elsewhere,
(A.45)

which means ‖gn‖ ≤ 2hn‖f0
‖.

To study the d.f. FY , we let Hn be the d.f. of
∑n

i=1 Xni. Then, for n = 2,

Hn(x) = P{Xn1 + Xn2 ≤ x} =

∫ ∞

−∞
Gn(x− u) dGn(u). (A.46)

Thus, for any a by DCT we have

lim
x→a−

[Hn(a)−Hn(x)] =

∫ ∞

−∞
lim

x→a−
[Gn(a− u)−Gn(x− u)] dGn(u)

=

∫ ∞

−∞
I{a− u = 0 or 1}[Gn(a− u)−Gn((a− u)−)] dGn(u)

=

∫ ∞

−∞
[I{a− u = 0}c0 + I{a− u = 1}c1] dGn(u)

= c0[Gn(a)−Gn(a−)] + c1[Gn(a− 1)−Gn((a− 1)−)]

= c2
0I{a = 0}+ 2c0c1I{a = 1}+ c2

1I{a = 2}.

By induction, we can show that for the general case n,

Hn(a)−Hn(a−) =
n∑

i=0

n!

i!(n− i)!
cn−i
0 ci

1I{a = i}. (A.47)

Hence,

[total jump size of Hn] = (c0 + c1)
n = [1− F0(t0 + hn) + F0(t0 − hn)]n

= [1− 2hnf0
(ξ)]n ∼ e−2f0 (t0)hnn = (e−2f

0
(t0))hnn = chnn, (A.48)

where ξ is between (t0 − hn) and (tn + hn), and for f
0
(t0) > 0,

0 < c = e−2f0 (t0) < 1. (A.49)

Now consider the derivative of Hn: hn = H ′
n. Let c2 =

∫∞
−∞ gn(x) dx =

∫ 1

0
gn(x) dx,

then c0 + c1 + c2 = 1. For case n = 2, we have that from (A.46),

Hn(x) =

∫ ∞

−∞
Gn(x− u) dGn(u) = c0Gn(x) + c1Gn(x− 1) +

∫ 1

0

Gn(x− u)gn(u) du.
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Since Gn is piecewise differentiable with bounded derivative, we know that Hn is piecewise

differentiable with derivative

hn(x) = c0gn(x) + c1gn(x− 1) +

∫ 1

0

gn(x− u)gn(u) du ≤ (c0 + c1)‖gn‖+ c2‖gn‖ = ‖gn‖

for any x. By induction, we can show that for the general case n,

‖hn‖ ≤ ‖gn‖. (A.50)

Since (A.42) gives FY (y) = P{Y ≤ y} = P{
∑n

i=1 Xni ≤
√

n y+θ0n} = Hn(
√

n y+θ0n),

then from (A.45), (A.48) and (A.50) we know that FY is piecewise continuous with

[total jump size of FY ] = [total jump size of Gn] = (c0 + c1)
n ∼ chnn,

where 0 < c < 1 as in (A.49), and FY is piecewise differentiable with derivative uniformly

bounded, because by (A.32),

F ′
Y (y) =

√
nhn(

√
ny + nθ0) ≤

√
n‖hn‖ ≤

√
n‖gn‖ ≤ 2hn

√
n‖f

0
‖ = O(1).

Therefore, FY satisfies the Lipschitz condition up to a remainder term converging to 0 at

rate of chnn; that is there exists a constant 0 < M0 < ∞ such that for any x and y,

|FY (x)− FY (y)| ≤ M0|x− y|+ M0c
hnn, for sufficiently large n. �
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