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Intervals for option prices ∗

Rituparna Sen †

Abstract

An important aspect of the stock price process, which has often been ignored in

the financial literature, is that prices on organized exchanges are restricted to lie on

a grid. We consider continuous-time models for the stock price process with random

waiting times of jumps and discrete jump size. We consider a class of pure jump

processes that are “close” to the Black-Scholes model in the sense that as the jump

size goes to zero, the jump model converges to geometric Brownian motion. We study

the changes in pricing caused by discretization. Upper and lower bounds on option

prices are developed. We study the performance of these intervals with real data.

1 Introduction

Most of the standard literature in finance for pricing and hedging of contingent claims

assumes that the underlying assets follow a geometric Brownian motion as given by the

Black and Scholes (1973) model. However diffusion models are not really valid descriptions

of data when it comes to microstructure. An alternative approach is to use pure-jump

models. Eberlein and Jacod (1997) argue why a pure-jump process is more appropriate

than a continuous one. The case for modeling asset price processes as purely discontinuous

processes is also presented in a review paper by Madan (1999). The arguments address both

the empirical realities of asset returns and the implications of the economic principle of no
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arbitrage. Some popular pure-jump models are the Binomial Model with Random Time

Steps of Dengler and Jarrow (1997), Variance Gamma model of Madan et al (1998), Normal

Inverse Gaussian model of Barndorff-Neilsen (1998), Hyperbolic Distribution of Eberlein

and Keller (1995), the CGMY process of Carr et al (2002). These are all parametric

models and there is no clear way to verify the model assumptions. We take a distribution-

free approach with minimal model assumptions and compute the range of values the option

price can take over all possible jump distributions that belong to a large class. A somewhat

similar approach is taken by Eberlein and Jacod (1997) who consider the class of all pure-

jump Levy processes. However, the bounds that they derive for option prices are too large

to be practicable.

Another aspect of the price process that has often been ignored is that security prices

typically move in fixed units like 1/16 or 1/100 of a dollar. This does not present any

particular problem when data are observed, say daily. Current technology however permits

almost continuous observation, and estimation procedures based on discretely observed

diffusions would then require throwing away data so as to fit the model. Harris (1991)

and Brown et al (1991) argue the economic reason for the traders as well as institutions

to maintain a non-trivial tick-size. Gottlieb and Kalay (1985) and Ball (1988) examine the

biases resulting from the discreteness of observed stock prices. One approach is to assume

an underlying continuous model and treat observed prices as realizations with rounding.

Another approach is to do away with the continuous path assumption completely and

concentrate on processes that move on a grid. A very common alternative model in financial

literature that does this is the Binomial model introduced by Cox et al (1979). This has

been extended to discrete time multinomial lattices in Boyle (1988) and Madan et al (1989).

Continuous time versions of the binomial model, as studied by Dengler and Jarrow (1997),

Korn et. al. (1998), Sen (2005) attempt to integrate the randomness of jump times with

the discreteness of jump sizes. We extend their approach by allowing jumps of random size,

not necessarily ±1.

As soon as we move out of the realm of continuous processes, the market becomes

incomplete and the distribution of stock prices is not uniquely determined by no-arbitrage

restrictions. We consider a class of jump processes that are “close” to the Black-Scholes

model in the sense that as the jump size goes to zero, the jump model converges to geometric

Brownian motion, which is the process for stock prices in the Black-Scholes model. We do

not assume any further structure on the distributions. This requirement of convergence
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gives us the rate of events of the jump process and the first few moments of the jumps.

Restricting to these models produces bounds on option prices that are small enough to be of

practical use, without imposing further assumptions on the model. Thus we get an idea of

how much difference it makes if we release the continuous path and normality assumptions

of Brownian motion. We impose very few moment conditions, thereby allowing the thick

tailed distributions that are observed in the empirical study of stock prices. The purpose of

the paper is two-fold: first, to study the deviation of option prices from those predicted by

continuous models; and second, to obtain the range of option prices when the distribution of

the stock price belongs to the class of discontinuous models under consideration. We obtain

interval estimates for option prices in the neighborhood of the point estimates obtained from

the Black-Scholes model.

The paper is organized as follows. Section 2 describes the proposed model, explains

the underlying assumptions and discusses the estimation of the parameters in the model.

Section 3 compares the range of option prices under the model to the Eberlein and Jacod

range and describes the algorithm to derive the upper and lower bounds on option prices

under all the permissible models. In Section 4 we present summary of results from actual

data to compare the various methods of computation and study the performance of the

model.

2 The proposed model

We start with the simple model of jumps of size ±c and event rate proportional to

the present stock price (linear jump rate). This is the discrete state-space version of the

popular affine jump diffusion models, for example see Duffie et al (2000). This model is also

studied by Korn et al (1998) where, assuming that the risk-neutral distribution is a linear

jump process, they obtain the implied jump rates by inverting the price of a market traded

option and price other options using these rates. However, we show that the linear intensity

birth-death model with constant intensity rate is not adequate. In section 2.1, we describe

the linear birth-death model of Korn et al (1998) and show that the stock price process

under this model converges in probability as c → 0 to a deterministic process. So we need

to either change the event rate or introduce jumps of size greater than 1. In Sen (2005),

we study the quadratic (intensity proportional to square of stock price) birth-death model

with random event rate. In this paper we study general jump models with jump size greater
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than one and linear intensity with constant rate. In section 2.2 we introduce these general

jump models. We state the precise theorem and conditions involving convergence of the

jump models to geometric Brownian motion, the continuous path models for stock prices

in Black-Scholes option pricing theory. This convergence result is a general technique. In

fact, if the underlying security is believed to have different properties than those predicted

by the Black-Scholes model in the limit, then we can similarly derive different conditions on

the class of “close” jump processes. As an illustration, similar conditions for convergence to

the Cox-Ingersoll-Ross model are stated. Hence under these modified conditions, we have

a model for interest rates that is the discretized version of the Cox-Ingersoll-Ross model.

2.1 The linear birth-death model

Suppose that the stock price St is a birth and death process with jump size c, jump

intensity λtSt/c, and probability of a positive jump pt for some positive parameters λt

and pt. Let Nt = St/c. For example, St is price of stock in dollars, Nt in cents,

c = 1/100. Nt is modeled as a non-homogeneous (birth and death rates per individual

depend on t), linear (rates are proportional to number of individuals present) birth and

death process. We suppose that there is a risk-free interest rate ρt. Let Pk(t) = P(Nt = k).

The Kolmogorov’s forward equations are:

P′k(t) = −kλtPk(t) + (k − 1)λtptPk−1(t) + (k + 1)λt(1− pt)Pk+1(t) k ≥ 1

P′0(t) = λt(1− pt)P1(t) k ≥ 1

(1) φ(u, t) =
∞∑

k=0

Pk(t)u
k =

[
1− 1

1
at(1−u)

+ bt

]N0

where at = exp{∫ t

0
λs(2ps− 1) ds} and bt =

∫ t

0
λsps/asds. The derivation of φ(u, t) is given

in Appendix B.

E(Nt) =
∂φ

∂u

∣∣∣∣
u=1

= N0

(
1− 1

1
at(1−u)

+ bt

)N0−1 1
at(1−u)2(
1

at(1−u)
+ bt

)2

∣∣∣∣∣
u=1

= N0at

Similarly, we can derive the variance of Nt. The distribution of Nt is the sum of N0 iid

random variables with mean at and variance (a−1
t + 2bt − 1)a2

t . So E(St) = S0at and
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Var(St) = c(a−1
t + 2bt − 1)a2

t S0.

P(| St − e
R t
0 ρsdsS0 |> ε) ≤ c(a−1

t + 2bt − 1)a2
t S0

ε2

When c −→ 0, St
P−→ exp{∫ t

0
ρsds}S0. Thus the simple model of jumps of size ±c and

event rate proportional to the present stock price converges to a deterministic process in

probability.

2.2 Introducing distribution on the size of jumps

Suppose now that for each n, the stock price S
(n)
t = N

(n)
t /n where N

(n)
t is a sequence

of integer valued jump processes. That is, the grid size is c = 1/n and we consider a

sequence of random processes with grid size decreasing to 0. We assume initial stock

price S
(n)
0 is the same for all n. The number of jumps ξ

(n)
t is assumed to be a counting

process with rate N
(n)
t σ2

t and the random jump size of N
(n)
t is denoted by Y

(n)
t . Let

F (n)
u = σ{Nu, 0 ≤ u ≤ t}. Under some assumptions on the conditional distribution of Y

(n)
t

that are outlined in Proposition 2.2.1, as n → ∞, the sequence of random processes S
(n)
t

converge in distribution to process St which evolves as

(2) ln St = ln S0 +

∫ t

0

(ρu − 1

2
σ2

u)du +

∫ t

0

σudWu

where Wt is standard Weiner process. This is the stochastic differential equation governing

the stock price process in the Black-Scholes model of asset pricing.

To illustrate that this method is quite general, we can consider the interest rate process.

Suppose the interest rate process R
(n)
t = N

(n)
t /n where the process N

(n)
t is as described

above. We assume initial interest rate R
(n)
0 is the same for all n. Under some assumptions

on the conditional distribution of Y
(n)
t that are outlined in Proposition 2.2.2, as n → ∞,

the sequence of random processes R
(n)
t converge in distribution to process Rt which evolves

as :

(3) Rt = R0 +

∫ t

0

a(b−Ru)du +

∫ t

0

σ
√

RudWu

where Wt is standard Weiner process. This is the stochastic differential equation governing

the interest rate according to the Cox-Ingersoll and Ross model for interest rates (Ref

Section 21.5 of Hull (1999))
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PROPOSITION 2.2.1: Let N
(n)
t and Y

(n)
t be as described above. Then the process S

(n)
t =

N
(n)
t /n converges in distribution to a process St which evolves as in (2) if:

(B1) sup
s≤t

∣∣∣∣∣ln
(

1 +
Y

(n)
s

N
(n)
s−

)∣∣∣∣∣
P−→ 0 ∀t

(B2)

∫ T

0

E

[
ln

(
1 +

Y
(n)
t

N
(n)
t−

)∣∣∣∣Ft−

]
N

(n)
t− σ2

t dt
P−→

∫ T

0

(ρt − σ2
t )dt

(B3)

∫ T

0

E




{
ln(1 +

Y
(n)
t

N
(n)
t−

)

}2 ∣∣∣∣Ft−


 N

(n)
t− σ2

t dt
P−→

∫ T

0

σ2
t dt

A set of sufficient conditions for (B2)- (B3) to hold is: E[Y
(n)
t | F (n)

t− ] = ρt/σ
2
t , E[Y

(n)2
t |

F (n)
t− ] = N

(n)
t− and | Y (n)

t |≤ kN
(n)δ
t− where 0 < k < 1 and δ < 2/3.

Proof The proof is given in Appendix A.

PROPOSITION 2.2.2: Let N
(n)
t and Y

(n)
t be as described above. Then the process R

(n)
t =

N
(n)
t /n converges in distribution to a process Rt, which evolves as in (3), if

(C1) sup
s≤t

∣∣∣∣
√

Y
(n)
s + N

(n)
s− −

√
N

(n)
s−

∣∣∣∣
P−→ 0 ∀t

(C2)

∫ T

0



E

[(√
Y

(n)
t + N

(n)
t− −

√
N

(n)
t−

) ∣∣∣∣Ft−

]
N

(n)
t−

σ2
t√
n
− a(b−N

(n)
t− /n)√

N
(n)
t− /n



 dt

P−→ 0

(C3)

∫ T

0

E

[(√
Y

(n)
t + N

(n)
t− −

√
N

(n)
t−

)2 ∣∣∣∣Ft−

]
N

(n)
t−

σ2
t

n
dt

P−→
∫ T

0

σ2
t dt

A set of sufficient conditions for (C2)- (C3) to hold is: E[Y
(n)
t | F (n)

t− ] = ab/(N
(n)
t− σ2) −

(a − σ2/4)/(nσ2), E[Y
(n)2
t | F (n)

t− ] = n and | Y (n)
t |≤ kN

(n)δ
t− where 0 < k < 1 and δ < 2/3.

According to Feller (1951), initial values can be prescribed arbitrarily for the model (3)

and they uniquely determine a solution. This solution is positivity preserving and norm

decreasing.

Proof The proof is similar to that of Proposition 2.2.1
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For the rest of the paper, unless otherwise mentioned, we shall restrict ourselves to stock

price processes St, that under the physical measure are pure-jump processes with the jump

time ξt, a counting process with rate St/cλ and jump size cYt, where Yt is an integer valued

random variable with E(Yt | St) = ν and E(Y 2
t | St) = St/c. We shall denote the class of

probability measures associated with such processes by M. We have shown that if we let

c to go to zero, then under some regularity conditions, such processes converge to geometric

Brownian motion with drift λ/ν and volatility λ. We shall denote P(Yt = i | St = cj) by

p(i, j).

3 Upper and lower bounds on option price

We shall assume, for this chapter, that there is a constant interest rate ρ. We restrict

ourselves to the class M of probability measures described in the end of Section 2.2 with

ν = ρ/λ. We do not have a unique distribution for the stock price. This is because the

distribution of jump size is not uniquely specified by the conditions imposed. We get a class

of models each of which gives a different price for options. A similar problem is addressed

in Eberlein and Jacod (1997) who consider the class of all pure jump Levy processes. They

derive upper and lower bounds for option prices when the distribution of the stock price

process belongs to a large class of distributions. In Section 3.1 we present the Eberlein-

Jacod bounds and show that these bounds hold if the class of distributions is M. We

show that in this case, there exists a smaller upper bound than the Eberlein and Jacod

upper bound. We also show that the lower bound is sharp; that is, there exist a sequence

of distributions in M, under which the option price converges to the Eberlein and Jacod

lower bound. We cannot obtain any sharp upper bounds theoretically for the models under

consideration. So in Section 3.2 we present an algorithm to obtain these.

3.1 Comparing to Eberlein-Jacod bounds

Suppose there is a constant interest rate ρ. Let γ(Q) = EQ[e−ρT f(ST )] be the expected

discounted payoff of an option under the measure Q. Assume

(D) f is convex, and 0 ≤ f(x) ≤ x ∀x > 0

LEMMA 1: Under each Q ∈M, e−ρtSt is a martingale.
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Proof The proof is given in Appendix B

It is shown in Eberlein and Jacod (1997), that under reasonable conditions on Q, and f

satisfying (D), the following holds:

(4) e−ρT f(eρT S0) < γ(Q) < S0

PROPOSITION 3.1.1: The Eberlein-Jacod bounds 4 hold for Q ∈ M and f satisfying

(D).

Proof Since f is convex, by Lemma 1, under each Q ∈M the process At = f(eρ(T−t)St)

is a Q-submartingale. So γ(Q) = e−ρT EQ[AT ] ≥ e−ρT f(eρT S0). We have e−ρT f(ST ) <

e−ρT ST by assumption (D). So γ(Q) < EQ[e−ρT ST ] = S0

PROPOSITION 3.1.2: There exists a smaller upper bound for γ(Q) than that given in

4 when Q ∈M .

Proof Let ξt be the counting process of the number of jumps in the stock price.

eρT γ(Q) = EQ[f(ST )]

= EQ[f(ST )I{ξT =0}] + EQ[f(ST )I{ξT >0}]

≤ P(ξT = 0)f(S0) + EQ[ST I{ξT >0}]

= P(ξT = 0)f(S0) + EQ[ST ]− EQ[ST I{ξT =0}]

= P(ξT = 0)f(S0) + eρT S0 − S0P(ξT = 0)

= eρT S0 − (S0 − f(S0)) exp{−S0

c
λ0T}

S0 − γ(Q) = e−ρT (S0 − f(S0)) exp{−S0

c
λ0T} > 0

PROPOSITION 3.1.3: Assuming ρ = 0, there exist a sequence of distributions Q(m) ∈
M such that γ(Q(m)) converges to the lower bound in (4) as m →∞

Proof Define the measure Q(m) as follows: For each value j of ξT and each m, define

the Markov chain S
(m,j)
k for 1 ≤ k ≤ j by

S
(m,j)
k =





S
(m,j)
k−1 −

√
S

(m,j)
k−1

√
c√

m−1
w.p. 1− 1

m

S
(m,j)
k−1 +

√
S

(m,j)
k−1

√
c
√

m− 1 w.p. 1
m

E[S
(m,j)
k − S

(m,j)
k−1 | S(m,j)

k−1 ] = 0

E[(S
(m,j)
k − S

(m,j)
k−1 )2 | S(m,j)

k−1 ] = cS
(m,j)
k−1

Hence Q(m) ∈M
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CLAIM 3.1.1: Given δand ε, for each j, we can get mj such that for all m > mj,

P(|S(m,j)
T − S0| > δ | ξT = j) < ε

CLAIM 3.1.2: There exists J such that P(ξT > J) < ε

Let n = maxJ
j=1mj. Then ∀m > n, ∀j < J P(|S(m,j)

T − S0| > δ | ξT = j) < ε

P(|S(m)
T − S0| > δ) =

J∑
j=1

P(|S(m)
T − S0| > δ | ξT = j)P(ξT = j)

+P(|S(m)
T − S0| > δ | ξT > J)P(ξT > J)

≤ ε× 1 + 1× ε

= 2ε

Hence S
(m)
T −S0

P−→ 0. S
(m)
T is non-negative and E(S

(m)
T ) = E(S0). So {S(m)

T } is uniformly

integrable. This and assumption D implies {f(S
(m)
T )} is uniformly integrable. S

(m)
T

P−→ S0

and f is continuous. So f(S
(m)
T )

P−→ f(S0). This and uniform integrability of f(S
(m)
T )

implies E(f(S
(m)
T )) −→ E(f(S0)) = f(S0)

Proof of Claim 3.1.1

P(| S(m,ξT )
T − S

(m,ξT )
0 |≤ ξT

√
S

(m,ξT )
0

√
c

1√
m− 1

| ξT = j)

≥ P(S
(m,ξT )
j − S

(m,ξT )
j−1 = −

√
S

(m,ξT )
j−1

√
c√

m− 1

& . . . &S
(m,ξT )
1 − S

(m,ξT )
0 = −

√
S

(m,ξT )
0

√
c√

m− 1
)

= (1− 1

m
)j ¤

Proof of Claim 3.1.2

P(ξT > J) ≤ 1

J
E(ξT ) =

1

J
E

∫
St

λ

c
dt =

S0λt

cJ
< ε for J sufficiently large¤

When ρ 6= 0, we need to let the grid size go to 0 to obtain a sequence of measures that

converge to the lower bound.

PROPOSITION 3.1.4: When ρ 6= 0, there exist a sequence of distributions Q(c,m) ∈M
such that γ(Q(c,m)) converges to e−ρT f(S0(1 + ρT )) as c → 0 and m →∞
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Proof The proof of Proposition 3.1.3 can be extended to nonzero interest rate with the

following modifications: For each grid size c, define the Markov chain S
(m,ξT )
k for 1 ≤ k ≤ ξT

by

S
(m,ξT )
k =





S
(m,ξT )
k−1 + cρ

λ
−

√
S

(m,ξT )
k−1 − cρ2

λ2

√
c√

m−1
w.p. 1− 1

m

S
(m,ξT )
k−1 + cρt

λ
+

√
S

(m,ξT )
k−1 − cρ2

λ2

√
c
√

m− 1 w.p. 1
m

Given ξT = j and all jumps are negative,

|ST − S0 − jcρ

λ
| ≤

√
c√

m− 1

j∑
i=1

√
Si − cρ2

λ2

≤
√

c√
m− 1

ξT

√
S0 +

jcρ

λ
− cρ2

λ2

m→∞−→ 0

So given δ, ε, j, can find m large enough so that P(|S(m,j)
T −S0−ξT cρ/λ| > δ/2 | ξT = j) < ε.

P(|ST−S0−S0ρt| > δ | ξT = j) = P(|ST−S0−ξT cρ/λ| > δ/2 | ξT = j)+P(|ξT cρ/λ−S0ρt| >
δ | ξT = j) < ε + ε. This is because cξT

P−→ λS0T as c → 0 since d < ξ >t= Stλ/c and

d < ξ, ξ >t= Stλ/c. The rest of the proof is same as the case ρ = 0 except that instead of

S0 we now have S0 + S0ρt. E(f(Sm
T )) −→ E(f(S0 + S0ρt)) = f(S0 + S0ρt). ¤

If ρt is small, S0 + S0ρt is approximately S0e
ρt.

γ(Qm,c,ρ) = E(e−ρtf(S
(m,c,ρ)
T )) −→ e−ρtf(S0e

ρt) as m →∞, c → 0, ρ → 0

3.2 Obtaining the upper and lower bounds

In Section 3.2.1 we describe a dynamic programming algorithm to get the maximum

price of an option with payoff f(ST ) when the distribution of the stock price process St

belongs to the class M. The same algorithm with the maximum at the intermediate steps

replaced by minimum will give the minimum price. This procedure gives a range for possible

option prices when the stock price process has a distribution Q ∈ M. Let ξt=number of

jumps in the stock price till time t and let Nt = St/c. The frequency distribution of ξT is

obtained in Section 3.2.2.

3.2.1 The Algorithm

• For each m such that P(ξT = m) > ε,

• For each i ≤ m , going down over the integers
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• For each value k of NTi−1

• maximize E(fi(l + Yi)|ξT = m,NTi−1
= k) over the distribution on Yi where

fi(x) = (x− K

c
)+ for i = m

fi(x) = maxE(f(x + Yi)|ξT = m,NTi−1
= x) for 1 ≤ i ≤ m− 1

The maximum value is f1(N0). The problem reduces to maximizing E(fi(l + Yi)|ξT =

m, NTi−1
= k) over the distribution on Yi. Let py,k = P(Yi = y|NTi−1

= k). We have the

constraints:
∑

py,k = 1,
∑

ypy,k = ρ/λ,
∑

y2py,k = k

E(fi(l + Yi)|ξT = m,NTi−1
= k) =

∑
y fi(l + Yi)py,kP(ξT = m|NTi−1

= k, Yi = y)∑
y py,kP(ξT = m|NTi−1

= k, Yi = y)

P(ξT = m|NTi−1
= k, Yi = y) =

∫ T

0

qi,k,y(t)Qm−i,k+y(T − t)dt

where Qm,k(t) = P(ξt = m|N0 = k) is given by Claim 3.2.1 and qi,k,y(t) is the conditional

density of Ti given NTi−1
= k, Yi = y. To obtain qi,k,y(t), observe that Ti = Ti−1 +∆Ti. The

conditional distribution of ∆Ti is Exp(Ni−1σ
2). Ti−1 is independent of NTi−1

= k, Yi = y.

The unconditional distribution is: P(Ti−1 ≤ t) = P(ξt ≥ i− 1) = 1−∑l−2
j=0 Qj,N0(t)

We have to maximize the ratio of 2 linear functions of py under three linear constraints.

That is: max x′y/x′z under three linear constraints on x. Suppose at the maximum

x′z = µ. Then at that point x′y is maximized subject to 4 linear constraints. This will be

a 4-point distribution. So the maximizing py is supported on 4 points. Let the four points

be y1, y2, y3, y4. From the three constraints, we can express py1 , py2 , py3 as linear functions

of py4 . Then we have to maximize a ratio of 2 linear functions of py4 . This is a monotone

function of py4 . Hence the maximum occurs at a boundary. So we actually have a three

point distribution where the maximum is attained. The algorithm is to check through all

the three point distributions of Yi and check where the maximum occurs.

An alternative procedure here is to do linear programming. But it was found that

both linear programming and checking through all possible three point distributions took

comparable amount of computational time. In fact we can characterize and eliminate

a lot of 3-point combinations from the search list since all pis need to be positive and

not all combinations satisfy this. On the other hand, since linear programming gives
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a numerical maximum, the result has the same minimum value numerically but is not

in general supported on three points and is therefore difficult to interpret. Hence our

simulations were all carried out by checking through all admissible three point distributions.

If the number of possible values of the stock price is n, then the number of possible

jump combinations that we need to check naively is n3. However, this number is greatly

reduced since all these combinations cannot support probability distributions with the given

constraints. Suppose the jump distribution is supported on three points y1 < y2 < y3. Want

to find (py1,k, py2,k, py3,k) such that




1 1 1

y1 y2 y3

y2
1 y2

2 y2
3







py1,k

py2,k

py3,k


 =




1
ρ
λ

k




Solving this, we get:

py1,k = λy3y2−ρy3−ρy2+λk
λ(y3−y1)(y2−y1)

py2,k = −λy1y3+ρy1+ρy3−λk
λ(y2−y1)(y3−y2)

py3,k = y1y2λ−ρy1−ρy2+kλ
λ(y3−y1)(y3−y2)

Must have: (1)(ρ/λ)2 < k (2)y1 < ρ/λ < y3

Fix y1. py2,k, py3,k > 0 ⇒ y2 < (kλ− ρy1)/(ρ− λy1) < y3

Fix y2 < ρ/λ. py1,k > 0 ⇒ y3 < (kλ− ρy2)/(ρ− λy2)

Fix y2 > ρ/λ. py1,k > 0 ⇒ y3 > (ρy2 − λk)/(y2λ− ρ)

Another issue here is that for computational purposes the search for maximum needs

to be restricted to finite limits. For stock prices the lower limit is always zero, since the

stock price cannot be negative. Theoretically there is no upper limit. So we derive in

Appendix C.1 the probability of the stock price lying below some given bounds. Then,

given a probability p close to 1, we obtain the corresponding upper bound on the stock

price and carry out the computation by restricting the stock price to be below that bound.

This gives bounds on the option prices that hold with probability p.
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3.2.2 Distribution of ξT

Let Pn,k(t) = P(Nt = n|N0 = k)

Qm,k(t) = P(ξt = m|N0 = k)

Pn,m,k(t) = P(Nt = n|ξt = m,N0 = k)

CLAIM 3.2.1: Qm,k(t) =
( kλ

ρ
+m−1)!

( kλ
ρ
−1)!

e−kλt (1−e−ρt)m

m!

Proof For m ≥ 1,

Qm,k(t + dt) = Qm−1,k(t)
∑

n

Pn,m−1,k(t)nλdt + Qm,k(t)(1−
∑

n

Pn,m,k(t)nλdt)

= Qm−1,k(t)E[Nt|ξt = m− 1, N0 = k]λdt

+Qm,k(t)(1− E[Nt|ξt = m,N0 = k]λdt)

= Qm−1,k(t)(k +
(m− 1)ρ

λ
)λdt + Qm,k(t){1− (k +

mρ

λ
)λdt}

Q
′
m,k(t) = Qm−1,k(t)(k +

(m− 1)ρ

λ
)λ−Qm,k(t)(k +

mρ

λ
)λ Qm,k(0) = 0

Q0,k(t + dt) = Q0,k(t)(1−
∑

n

Pn,0(t)nλdt) = Q0,k(t){1− kλdt}

Q
′
0,k(t) = −Q0,k(t)kλ Q0,k(0) = 1

It can be easily verified that the proposed expression for Qm,k(t) satisfies the conditions

derived above.¤
For computational purposes, we have to restrict to finite values of ξT . It is shown in

Appendix C.2 that for every c, the number of jumps in finite time is finite almost surely.

3.3 Maximum value the stock price can attain

While searching for the maximum option price, for computational purposes, we have

to restrict the stock price to an interval. The lower limit of this interval is zero, because

the stock price cannot be negative. There is, however, no natural upper limit. So we do

a simulation study to find out how the bounds on option prices behave as we increase the

limit on the maximum value of the stock price. Let us denote by lim this maximum value

relative to the present stock price. That is, we shall consider {sup0≤t≤T St ≤ lim × S0}.
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With S0 = $15, tick size =$1/8 and strike K = $12, Table 4.2 presents P(ξT = m) and

max E[(ST −K)+|ξT = m] for various values of m and lim. Table 4.2 does the same for

the minimum. Recall that ξt is the number of jumps in time 0 to t. It is shown theoretically

in Appendix C.1 that probability of lim > 20 is 0.05. It is seen here computationally that

there is very little difference in price of the option between lim=20 and lim=1.5. Also, for

each ξT we can compute the minimum and maximum for increasing values of lim and stop

when there is very little increase.

If lim is too small, no possible three-tuple exists between 0 and lim × N0 so that the

jump probabilities are non-negative. So some of the values are unavailable. Once there are

possible three-tuples, increasing lim further doesn’t change the minimum and maximum

option price almost at all.

3.4 Robustness

The condition of convergence to Black -Scholes introduces constraints on the moments

of the jump distribution. It might be of interest to studying how much the results are

affected if we relax these constraints slightly. The first moment condition is necessary for

martingale properties. So we keep it unaltered. We relax the second moment conditions by

5% and compute the maximum under these new conditions. What this means is instead of

considering distributions that have second moment exactly equal to Nt, we consider those

with second moment between 0.95Nt and 1.05Nt. We do the same thing at 10% and 20%.

In Figure 1 we present the ratio of the maximum under the relaxed set of constraints to

the maximum under the original constraints for various strike values (K) when the present

stock price is $100 and time to maturity is 3 months. It is observed that in-the-money

CALL options are very robust. Also for all the options considered, the changes are almost

same for 10% and 20% which suggests that the changes stabilize after sometime.

4 Real data applications

4.1 Description

Data on stock price and option price was obtained from the option-metrics database for

three stocks: Ford, IBM and ABMD. The stock data is transaction by transaction. The

format of the raw stock data is: SYMBOL, DATE, TIME, PRICE, SIZE, G127, CORR,
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COND, EX. After filtering for after hour and international market trading, the data is

on tradings in NASDAQ regular hours. The prices are divided by the tick size to obtain

integers.

The option data is daily best bid and ask prices. We preprocess the data to remove

volume zero and symbols not equal to F,IBM or ABMD. For example, we do not consider

the roots XFO, YFY, FOD and YOD which are on Ford stocks after a merger which

pays $20 per stock + 1 stock of the new company. The option data has ‘date, Call/Put,

expiration, best-bid, best-ask, strike’.

We shall use the data for the first day of the month as training sample and for the

rest of the days as test sample. Table 4.2 summarizes the average number of trades per

day for each of the stocks and the dates for the training and test samples. We estimate

the risk-neutral parameters by inverting option prices in the training sample and use these

estimates to predict prices of options in the test sample. The 3 stocks provide some variety.

The Ford stock is a little old when the tick size used to be $1/16 while the others have

tick size $1/100. This should shed some light on how much effect the change in tick size

has on the analysis. The ABMD data is much more thinly traded than the other two,

as will be evident from the plots of paths of stock prices. So while the IBM data can be

well approximated by a continuous path and it might still be alright for the Ford data, the

continuity assumption for the ABMD data is definitely too far-fetched.

4.2 Intervals for Option prices

For the general jump model, we obtain the intervals for option prices from the model

under various values of the intensity rate parameter. For the learning sample of ABMD,

we have 12 options that are traded on Feb 3, 2003. For values of the intensity parameter

between 1 × 10−9 to 10 × 10−9, we obtain the intervals based on simulations of size 1000.

Figure 2 plots the length of the predicted interval against the distance of the predicted

interval from the observed interval, as obtained for various values of the parameter. The

range of option prices is 0-160. The average observed bid-ask spread is 25. The unit is 1c.

The distance is measured as the average distance between the midpoint of bid and ask and

the point on the predicted interval that is closest to the observed interval. Similar plots

for the IBM and Ford data are in figures 4 (a) and 5 (a). Table 4.2 summarizes the various

characteristics of the training samples for the 3 stocks. All numbers are in multiples of

tick. The number of replications for the simulations are always 1000.
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We choose one of the parameter values and use that to predict the range of option

prices for the test samples. The various characteristics of the test samples for the 3 stocks

are summarized in table 4.2. These include the average length of the predicted interval

and the distance of the predicted interval from the observed interval, as obtained from the

analysis. We present the plots showing the midpoints of observed bid-ask intervals and the

corresponding predicted intervals for the test samples in figures 3, 4 (b) and 5 (b). For the

ABMD data we also present a similar plot for the training sample in figure 3 (a).

A Proof of Proposition 2.2.1

Let X be a process driven by the stochastic differential equation dXt = (ρt− 1
2
σ2

t )dt+

σtdWt, where Wt is standard Weiner process. In particular X is a process with

independent increments and characteristics (
∫ T

0
(ρt − σ2

t /2)dt,
∫ T

0
σ2

t dt, 0).

Let X
(n)
t = log(N

(n)
t /N

(n)
0 ). From (6.10) in Mykland (1994)

(5) < X
(n)
t , X

(n)
t >t=

∫ T

0

E

[
(∆X

(n)
t )2

∣∣∣∣Ft−

]
N

(n)
t− σ2

t dt
P−→

∫ T

0

σ2
t dt

(6) < X
(n)
t >t=

∫ T

0

E

[
(∆X

(n)
t )

∣∣∣∣Ft−

]
N

(n)
t− σ2

t dt
P−→

∫ T

0

(ρt − σ2
t /2)dt

(5), (6), assumption B1 and Theorem VIII.3.6 of Jacod and Shiryaev (2002) imply X(n) L−→
X. Since exp is a continuous function, S(n) = exp(X(n))

L−→ exp(X) =: S. By Ito’s

formula,

dSt = St[(ρt − 1

2
σ2

t )dt + σtdWt] +
1

2
Stσ

2
t dt = Stρtdt + StσtdWt

We shall now prove that if E[Y
(n)
t | F (n)

t− ] = ρt/σ
2
t , E[Y

(n)2
t | F (n)

t− ] = N
(n)
t− and | Y

(n)
t |≤

kN
(n)δ
t− where 0 < k < 1 and δ < 2/3, then

E

[
(∆X

(n)
t )

∣∣∣∣Ft−

]
N

(n)
t− σ2

t
P−→ ρt − σ2

t

E

[
(∆X

(n)
t )2

∣∣∣∣Ft−

]
N

(n)
t− σ2

t
P−→ σ2

t du

E

[
(∆X

(n)
t )

∣∣∣∣Ft−

]
N

(n)
t− σ2

t = E

[
ln

(
1 +

Yt

Nt−

)
Nt−σ2

t

∣∣∣∣Ft−

]
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∣∣∣∣ ln

(
1 +

Yt

Nt−

)
−

[
Yt

Nt−
− 1

2

Y 2
t

N2
t−

] ∣∣∣∣Nt−σ2
t ≤

∣∣∣∣
∑
j≥3

1

j
(−1)j−1 Y j

t

N j
t−

∣∣∣∣Nt−σ2
t

≤
∑
j≥3

1

j

| Y j
t |

N j−1
t−

σ2
t

≤ σ2
t

∑
j≥3

kj

j

N jδ
t−

N j−1
t−

Since j ≥ 3 and δ < 2/3, j − 1 − jδ > 0. Also, Nt− ≥ 1. Hence the last expression is

bounded above by σ2
t

∑
j≥3

kj

j
and goes to 0 a.s. as n →∞. Hence,

E

[
ln

(
1 +

Yt

Nt−

)
Nt−σ2

t

∣∣∣∣Ft−

]
−→ E

[(
Yt

Nt−
− 1

2

Y 2
t

N2
t−

)
Nt−σ2

t

∣∣∣∣Ft−

]
= ρt − σ2

t /2

The other convergence can be proved similarly by considering the Taylor expansion of

ln(1 + Yt

Nt−
)2

B

B.1 Proof of Lemma 1

From (6.10) of Mykland (1994)

d < S >t= E(∆St | Ft−)Ntλdt = cνNtλdt = ρStdt

Hence, Mt = St −
∫ t

0
ρSudu is a martingale. By Ito’s formula,

d(e−ρtSt) = e−ρt(dSt − ρStdt)

e−ρtSt =
∫ t

0
e−ρudMu is a martingale. ¤

B.2 Derivation of φ(u, t) in Equation (1)

The Kolmogorov’s forward equations are:

P′k(t) = −kλtPk(t) + (k − 1)λtptPk−1(t) + (k + 1)λt(1− pt)Pk+1(t) k ≥ 1

P′0(t) = λt(1− pt)P1(t) k ≥ 1
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Multiplying both sides by uk and taking sum over k, we get

∂φ

∂t
− (−λtu + λtptu

2 + (λt(1− pt))
∂φ

∂u
= 0

The corresponding ordinary characteristic differential equation is:

du

dt
= −(−λtu + λtptu

2 + (λt(1− pt))

Substituting v = u− 1 and rearranging terms, we get:

dv + (2pt − 1)λtvdt = −λtptv
2dt

Let at =
∫ t

0
exp{(2ps − 1)λs}ds. We can do separation of variables as:

d(vat)

(vat)2
+

λtpt

at

dt = 0

Let bt =
∫ t

0
λsps/asds. The general solution of the characteristic differential equation in

implicit form is, therefore, given by:

C1 = bt − 1

vat

where C1 is an arbitrary constant. Thus the genral solution of φ(u, t) has the structure:

φ(u, t) = f

(
bt +

1

(1− u)at

)

where f is a continuously differentiable function. f can be determined by making use of

the initial condition φ(u, 0) = uN0 . Hence f(x) = 1− 1/x. So

φ(u, t) =

(
1− 1

1
(1−u)at

+ bt

)N0

where at =
∫ t

0
exp{(2ps − 1)λs}ds and bt =

∫ t

0
λsps/asds.

C

C.1 Probability Bounds on Stock price process

Since the discounted stock price is a martingale and interest rate is positive, the stock

price process is a sub-martingale. Also, if we consider the closure of the state space on the
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infinite line and set the transition function as in the proof of Thm VI.2.2 of Doob (1953),

then by Thm II.2.4′ of Doob, there is a standard extension of the process which is separable

relative to the closed sets. Now, Theorem 3.2 of Doob Section VII.11 is applicable and we

get:

∀ ε > 0, εP{L.U.B.
{o≤t≤T}

St(ω) ≥ ε} ≤ E(ST ) = eρT S0

C.2 Nonexplosion of number of jumps

In the notation of Kerstind and Klebaner (1995), on the St scale,

m(z) = E(
Yn

n
) =

ρ

nσ2

λ(z) = nzσ2

∫ ∞

0

1

m(z)λ(z)
dz =

∫ ∞

0

1

ρz
dz = ∞

By Thm 1 of Kersting and Klebaner (1995)
∑∞

n=0(λ(Zn))−1 = ∞ a. s. This is the necassary

and sufficient condition for nonexplosion, see for example Chung (1967), that is there are

only finitely many jumps in finite time intervals.
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TABLE I
ξT prob 1 1.1 1.2 1.5 2 10 20
0 0.855970 3 3 3 3 3 3 3
1 0.132394 – 4.1603 4.1603 4.1603 4.1603 4.1603 4.1603
2 0.011074 – – 5.3207 5.3207 5.3207 5.3207
3 0.000663 – – – 6.5527 6.5526 6.5526
4 0.000032 – – – 7.8014 7.8014 7.8014
E () 1000133 – – – 3.182224 3.182224 3.182224

TABLE II
ξT prob 1 1.1 1.2 1.5 2 10 20
0 0.855970 3 3 3 3 3 3 3
1 0.132394 – 4.1917 4.1917 4.1917 4.1917 4.1917 4.1917
2 0.011074 – – 5.3522 5.3522 5.3522 5.3522
3 0.000663 – – – 6.5841 6.5841 6.5841
4 0.000032 – – – 7.8636 7.8947 8.3698
E () 1.000133 – – – 3.186753 3.186754 3.186769

TABLE III

Stock Trades Dates for sample
per day Training Test

F 1675 Dec 4, 2002 Dec 5-Dec 31, 2002
ABMD 400 Feb 3, 2003 Feb 4-Feb 28, 2003
IBM 4270 June 3, 2002 June 4-June 30, 2002

TABLE IV

Stock Sample Range of Range of Average observed
size option prices parameters bid-ask spread

ABMD 12 0-160 1× 10−9 to 10× 10−9 25
F 34 0-180 0.5× 10−7 to 4.5× 10−7 2
IBM 92 0-3700 0.7× 10−9 to 2× 10−9 10

TABLE V

Stock Sample Number of Parameter Range of Average Average
size replications option prices length distance

ABMD 33 1000 3× 10−9 0-550 47.18 18.59
ABMD 33 10000 3× 10−9 0-550 66.56 13.06
F 578 1000 2× 10−7 0-256 17.14 4.33
IBM 1823 1000 1.4× 10−9 0-8000 273.17 55.68
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Figure 1: Plot for Robustness Study
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Figure 2: ABMD Training: Length of predicted interval vs distance of predicted interval
from observed interval
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Figure 3: ABMD Intervals and bid-ask midpoint (a) Training data (b)Test data
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Figure 4: (a) IBM Training: Length of predicted interval vs distance of predicted interval
from observed interval (b)IBM Prediction: Predicted intervals and bid-ask midpoint
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Figure 5: (a) Ford Training: Length of predicted interval vs distance of predicted interval
from observed interval (b)Ford Prediction: Predicted intervals and bid-ask midpoint


