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Abstract

Lenders use rating and scoring models to rank credit applicants on their expected

performance. The models and approaches are numerous. We explore the possibility

that estimates generated by models developed with data drawn solely from extended

loans are less valuable than they should be because of selectivity bias. We investigate

the value of “reject inference” – methods that use a rejected applicant’s characteris-

tics, rather than loan performance data, in scoring model development. In the course

of making this investigation, we also discuss the advantages of using parametric as

well as nonparametric modeling. These issues are discussed and illustrated in the

context of a simple stylized model.
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1. Introduction Credit scoring models rate credit applications on the basis of cur-

rent application and past performance data. Typically, credit performance measures and

borrower characteristics are calculated as functions of the data for a sample of borrowers.

These measures are then used to develop statistical scoring models, the output of which,

scores, are forecasts of credit performance for borrowers with similar characteristics. For

example, a model might generate a predicted performance measure as a function of the

applicant’s utilization rate for existing credit lines. A lender will typically use this perfor-

mance predictor as part of a decision on whether or not to extend credit in response to the

application. A simple decision rule would be to accept the application only if the estimated

performance measure (say, the probability of delinquency or default) is less than a critical

value α. The appropriate performance metric may vary across applications. A natural met-

ric in the stylized models we will discuss is default probability; although we found it useful

to reference “default probability” throughout the paper, the discussion holds for essentially

any performance measure. A practical, though more complicated approach, is to estimate

a loan’s profitability. We note that in retail banking practice, it is more common than not

to report performance forecasts (scores) that increase in value as the probability of default

decreases. In contrast, corporate and other business rating and scoring models usually

report scores and grades that increase with the probability of default. In the balance of

this paper, we make use of the latter convention.

Discussions of credit scoring, including various approaches for different applications

(mortgage lending, credit card lending, small commercial lending, etc.) are given by

Thomas, Edelman and Crook (2002), Hand (1997), Thomas, Crook, and Edelman (1996)

(a collection of relevant articles) and others. A recent review of the credit scoring problem

including an insightful discussion of evaluating scoring mechanisms (scoring the score) is

given by Hand (2001). Early treatments of the scoring problem are Bierman and Hausman

(1970), and Dirickx and Wakeman (1976); this work has been followed up by Srinivasan

and Kim (1987) and others.

A critical issue in credit modeling is the relevance of the data on the experience of loans

extended to the potential experience of loans declined. Can the relation between default

and characteristics in the sample of loans made be realistically extended to predicting the

default probabilities for loans not made? This problem is known as a “selectivity” problem.

A number of methods based on “reject sampling” have been proposed to try to use data

from rejected loan applications together with the experience of existing loans. A related
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issue is the relevance of the experience with loans presently or previously outstanding

to current and future potential loans. Demographic changes (an aging population) or a

different stage in the business cycle could diminish the relevance of such experience.

The procedure we examine is essentially sequential, though the full implications of the

sequential updating process are not explored here. Loan applications are accepted according

to some rule, possibly stochastic. The experience of these loans is recorded and used to

estimate, or sharpen, existing estimates of default probabilities. Of course, repayment

and default information is available only on loans that were extended. However, data are

available on rejected loans, and we explore the potential for bias in using the data only

on accepted loans. We also address the possibility of using ”reject sampling” schemes to

improve scoring models or default risk estimates. Our simple framework abstracts from

some difficult practical problems (such as what exactly default is; how to account for loans

applied for, accepted by the bank, and then declined by the applicant; and how default

probabilities change over the duration of a loan). Nevertheless, our focus on default as

the outcome of interest is a useful abstraction: in practice it may be appropriate to study

the expected profit performance of a given loan application. This involves the default

probability, but adds other considerations, including for example the pricing of the loan.

Throughout we emphasize a key conceptual distinction between two closely related

questions: Should the bank continue to make loans to applicants with marginally acceptable

characteristics? Should the bank extend loans to applicants whose characteristics under

current rules are marginally unacceptable? There is data on the former question, as default

probabilities can be directly measured from experience with loan performances. Because

the latter question cannot be answered using this conventional data, we must turn to

parametric assumptions or other methods by which to extrapolate from the given sample.

The only reliable way to answer the second question is to use these parametric assumptions

or collect additional information. We suggest carrying out experiments with the scoring

rule.

To sum up: We first cast some doubt on the likely importance of selectivity bias in

credit scoring; we consider reject inference and raise doubts about its practical applica-

tion; we consider advantages and possible disadvantages of parametric inference on default

probabilities; and finally we turn to potential gains from experimentation with the credit-

granting rule for the purpose of generating information.
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2. A Stylized Model A simple model allows concentration on key conceptual issues.

Suppose the income from serving an account over a fixed period is π, the probability of

default is p, and the loss given default is λ (defined here as a positive number). Then

the expected profit from this account over the period (we will return to the question of

the period) is π(1 − p) − λp. In this case, loans are profitable only if p 5 π/(π + λ).

As a practical matter, banks often rank applicants according to the estimated value of p

and extend loans to those applicants with the smallest default probabilities (as funds are

available) up to the critical value p∗ = π/(π + λ). Of course, there is a lot missing in this

calculation, including the important question of estimation error in p and how that might

vary across applicants.

A minor variation on this calculation can get around the awkward question of the

definition of the period. Let us reinterpret profit as a rate of income accrual, π∗. Assume

the discount rate is r. Let T , a random variable, be the time of default and suppose for

simplicity that T is distributed exponentially with parameter θ, f(t) = e−θt. Then expected

profit is given by

E(profit|T ) =

∫ T

0

π∗e−rt − λe−rT (2.1)

= π∗/r − (π∗/r + λ)e−rT

and unconditionally

E(profit) = π∗/r − θ(π∗/r + λ)/(r + θ). (2.2)

Again, we get a cutoff rule, order the applicants in terms of a and extend loans to those with

the smallest values of θ, up to the critical value. For a fixed period, there is a monotone

map between θ and p, the default probability in the previous model.

The point of this exercise is not to exhibit a realistic model, but to illustrate that

the lesson from the simple model is fairly robust. Namely, the optimal lending policy

will involve ranking applicants according to a performance measure and lending funds as

available up to a cutoff point. Note that, as a practical matter, essentially all of the “fixed”

parameters in the simple model will vary across applicants and possibly over time according

to macroeconomic and local economic conditions.

3. Information and Identification Suppose the application data consists of X. At

present, X can be rather abstract, perhaps a collection of numbers indicating financial
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history, discrete or continuous variables, etc. On the basis of X, a decision is made whether

to approve a loan application. Let A be the variable indicating loan approval (A = 1) or

decline (A = 0). We partition X = (XA, XR) corresponding to characteristics associated

with approved and rejected loans. X is observed in both cases.

Suppose the population relationship between default D (= 1 for default, 0 for no default)

and data X is P (D|X). P (D|X) is thus the probability of default given characteristics X

in the population. The chain determining events is

X → (A,X) → (D∗A,A, X) = (DA, A, X) (3.1)

where the final state DA = D ∗ A consists of D if it is observed, that is if A = 1, and no

information on D if A = 0. D is partitioned (DA, DR) and DR is not observed. Here X

determines A and X is simply carried along as a determinant of D. The final state DA is

determined by A and X.

The key observation here is that the intermediate state, (A,X) contains no information

not already contained in X. A is determined as a (possibly random) function of X. For

example, X might be the predictor variables in a default risk model and A might be chosen

to equal 1 (accept the application) if the predicted default probability is less than α. In

this case, A is a deterministic function of X. Alternatively, A could be completely random,

determined, for example, by a coin flip. In the language of the statistical literature on

missing data, the mechanism determining A and hence DR is missing at random (MAR);

see Little and Rubin (2002) and Hand and Henley (1994). The deterministic case, possibly

relevant here, in which A is determined by some function of X, is a special case of the

MAR mechanism.

Since A contains no information not contained in X, inference on P (D|X) does not

depend on A. Of course, this inference can only be made for X configurations actually

observed. Which credit histories are observed depends on X (and possibly a random

mechanism), so there is no bias associated with estimating those probabilities that are

identified. To illustrate, suppose X is binary and the deterministic selection rule takes only

applications with X = 1. In this case, no information on P (D|X = 0) will be generated,

though additional information on P (D|X = 1) will be. This illustrates the difference

between the two central questions: First, are loans being made that shouldn’t be made (a

question that can be answered using estimates of P (D|X = 1))? Second, are loans that

should be made not being made (a question that must be answered using P (D|X = 0), on
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which there is no data)1?

4. Hidden Variables and Selectivity The potential for biases in using the accepted

loan data only arises when the selection mechanism proxies for omitted, but important,

variables in the default equation. To see this in our Markov setup, we augment the variables

by including the hidden variable U . Thus

(X, U) → (A,X, U) → (DA, A, X) (4.1)

If U was observed, the problem duplicates the previous one; if not, things become more

complicated. Specifically, we would like to estimate P (D|X, A), the conditional probability

of default given characteristics, marginally with respect to the hidden U , on the basis of our

observed data, which are P (DA|X,A). In the previous section, P (D|X) and P (DA|X,A)

were the same, because A carried no relevant information given X. In the present case, A

might be relevant as a proxy for U . This is the case referred to as not missing at random,

NMAR.

This point can be made in the simpler context of inference on the marginal probability

of default. Thus we focus temporarily on the selection issue and abstract that issue from

the problem of inference on the effects of the X variables. The chain becomes

U → (A,U) → (DA, A) (4.2)

and we wish to make inference on P (D) on the basis of the data, which are informative on

P (DA). Now, P (D) is the marginal probability of default in the population, given by

P (D) =

∫
P (D|U)g(U)dU, (4.3)

while

P (DA) =

∫
P (D|U,A)g(U |A)dU (4.4)

=

∫
P (D|U)g(U |A)dU

1Note that P (A|X) can be estimated, and such an estimate might help an outside examiner trying to de-
termine, for example, whether an institutional loan policy satisfies various legal requirements. Nevertheless,
it does not provide information on P (D|X).
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(the second equality holds since A carries no new information given U). Here g(U) is the

marginal distribution of U in the population and g(U |A) is the conditional distribution.

Thus

P (DA) 6= P (D′) (4.5)

unless A and U are independent. Hence using information on the accepted loans to make

inference about the population default probability leads to bias.

The argument is easily extended to inference about the effects of characteristics X on the

conditional distribution P (D|X) using data generated by the distribution P (DA|X,A =

1). If the hidden variable U affects D and A, then A will proxy for the effect of U in

P (DA|X,A = 1), leading to incorrect inferences. Note that

P (DA|X, U,A = 1) = P (D|X,U), (4.6)

so A is irrelevant given U and X. Nevertheless

P (DA|X,A = 1) 6= P (D|X). (4.7)

It is only through the interdependence of A and the missing hidden variable U that bias

arises.

What is the hidden variable U? This is not so clear. One obvious example arises when

a variable used in scoring, and relevant for predicting default, does not enter the default

probability model. It would be a clear mistake to include a variable in the scoring model

that was not in the default model (although one could argue that not all variables in the

default model need appear in the scoring model); thus, we suspect that this is not a likely

source of bias.

The key is that the hidden variable must affect the decision to approve the loan and the

default probability. This variable can be observed by whoever makes the lending decision

but not by the default modeler. If loans are made in person, for example, an experienced

loan officer may be able to get a “feel” that the applicant is more (or less) reliable than

the paper data indicates. There may be many components to this “feel” not reflected in

the application data: promptness in showing up for appointments, openness vs. shiftiness,

vagueness or precision in answering questions. Such observations will affect the loan decision

and, if they are accurate, also the default probability. If the variable is observed by the loan

originator and used in the acceptance decision, but is in fact not relevant to the default

probability, there will be no induced bias in using the default data on the accepted loans.
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Bias only arises if the data is relevant, is available to the acceptance decision maker and

used, and is not available to the default modeler.

This bias cannot be corrected without adding information. One source of information is

a priori – parametric assumptions on the joint distribution of A and D given X, P (A,D|X).

If these assumptions are sufficient to allow estimation of the parameters of the distribution

given only the selected data, then the bias can be corrected. This approach has led to a

huge literature in labor economics, beginning with Heckman (1976). Of course, a better

source of information is more data. Impractical in the labor economics applications where

the decisions are made by the same individual (the classical application has D being wages

or hours of work and A employment), it is feasible when the institution determines A and

the applicant determines D. Much less restrictive assumptions can sometimes be used to

bound the probabilities (Manski (1995) gives an insightful treatment of this approach and

the identification question generally).

5. Reject Inference Modelers typically employ “reject sampling” or “reject inference”

because they are concerned that potentially relevant information in the application data for

rejected loans ought to be used in the default model. In this section we ask whether there

is any relevant information in such data. The answer is usually no. That is, in studying

default probabilities conditional on characteristics X, the relevant random variables gen-

erating information about the probabilities of interest, are the default/nondefault records.

The additional X variables alone are not of great interest in studying defaults (although

they are of course informative on the scoring process, since the associated dependent vari-

able accept/reject is observed). Useful discussions of reject sampling include Crook and

Banasik (2004) and Hand and Henley (1993, 1994).

Many reject sampling procedures assign values of the missing dependent variable,

default/non-default, for the rejected applications according to the values of the X variables.

This phase is referred to as “data augmentation.” These values then enter a secondary

analysis as real data. But the new default values are not random variables relevant to

inference about defaults. That is, they are not default data. They are functions (possibly
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stochastic) of the existing default data. On a purely conceptual basis we have

(XA, DA) for accepted loans ↘
(XA, XR, DA, DR) = ”augmented” data

XR for rejected loans ↗
(5.1)

We have not been specific about how the DR, the default history for the rejected loans, is

constructed, but the details are irrelevant for the concept. Namely, the augmented data do

not contain any information not in the original data XA, DA and XR.

In this example, when the information content of the augmented data and the original

data is the same, a proper data analysis (taking account of the singular conditional distri-

bution of DA and DR in the augmented data set) will get the same answers from either

of the two data sets. If the augmented data set is analyzed as though it were real data,

the results will reflect the assignment DR. At the very least, the results will offer false

precision, as illustrated below. If the assignment is arbitrary, the results may distort the

information in the actual data.

Consider the simple example with X a single binary variable, and only one realized

value chosen for the loan. There is information about only one of the default probabilities,

corresponding to the chosen value of the X, not about both. The fact that one of the

probabilities is unidentified is telling. If reject sampling produces a data set that purports

to identify the other probability, it is being identified with non-data information. Thus

suppose

(XA, DA) for accepted loans ↘
XR for rejected loans −→ (XA, XR, DA, DR) = ”augmented” data

Non-data Information Z ↗
(5.2)

The non-data information Z consists of (in a common case) functional form assumptions

or other assumptions made by the rejection sample design. For example, in our simple case

the default probability corresponding to the value of XR might just be assigned as, say, β.

The result would be that an analysis of the augmented data set, treating it as a real data

set, would discover that the default probability for the unselected value of XR is β. But

would it be sensible for a bank to base decisions on this kind of inference? The point is

that the information being recovered by an analysis of the augmented data is generated by

XA, XR, DA and Z. One should ask whether Z really deserves equal weight with the data?
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Here is a less obvious, and less arbitrary, example. Suppose, in the context of our ex-

ample with binary X, the acceptance decision is randomized so that there are some loans

with X = 1 and some with X = 0. Then there is data information on both default proba-

bilities. Suppose these are estimated from the accepted data as β0 and β1, corresponding

to X = 0 and X = 1. We propose to assign default data (the dependent variable) to the

XR, the sample of application data from rejected loan applications. One way to do this

would simply be to assign βi as the value of the 0/1 variable DR corresponding to XR = i.

These non 0/1 dependent variables will pose problems for some estimation methods, how-

ever. Another assignment method is simply to draw DRi = 1 with probability βi and zero

otherwise. Another method in use is to assign, for each XR, βi observations to the sample

of defaults and 1−βi to the sample of non-defaults. Some methods multiply these fractions

by a factor generating integer numbers of additional observations. The point is that no new

information is contained in the augmented data set, though an analysis of the augmented

data as though it were real data seems to produce much more precise parameter estimates

than the accepted data alone. Here the non-data “information” Z is the assumption that

defaults in the rejected sample look exactly like their predicted values on the basis of the

accepted sample. Thus, bias is not introduced, but a false sense of precision is introduced.

Another common method of assignment is based on functional form assumptions. For

example, suppose X is a continuous scalar variable and the dependence of the default

probability on X is estimated by a logit model using data from the sample of loans extended.

Suppose only values of X greater than a cutoff x∗ are selected. Then, the accepted sample

has X > x∗ and the declined X 5 x∗. Under the assumption that the logit model holds

throughout the range of X in the population, predicted default probabilities or predicted

defaults can be made for the declined sample on the basis of information in the accepted

sample. Adding these “observations” to the augmented data set will give seemingly more

precise estimates of the same parameters used to generate the new observations. This is

merely a classic example of double-counting.

Consider this effect in the case where the X are all the same, so the default probability to

be estimated is simply the marginal default probability. Using the sample of n1 accepted

loans, we estimate this probability by p̂ = #defaults/(#defaults+#non-defaults) with

sampling variance p̂(1 − p̂)/n1. Now consider augmenting the dataset with information

from the n2 declined loan applications. Assign defaults to these applications using one of

the methods described above (for example, for each new observation, assign p̂ new defaults
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and 1 − p̂ new non-defaults). Using the augmented sample, we calculate a new estimate,
̂̂p = # defaults in the augmented data/(n1 + n2). Clearly ̂̂p = p̂, so our procedure has

not introduced bias. (Assuming that the acceptance mechanism is not informative about

the default probability, p̂ is a correct estimator for the default probability). However, the

standard calculation of the sampling variance of the estimator gives V (̂̂p) = ̂̂p(1− ̂̂p)/(n1 +

n2) = n1/(n1 + n2) times V (p̂). If the accepted and declined samples are equal in size,

the augmented data gives an estimator with one-half the variance as the accepted sample.

The ridiculousness of this procedure is easily illustrated by a further extension. Suppose

there are an additional n3 people who did not apply. In this example, knowing the X for

these people (everyone has the same X), we apply the same procedure. This leads to the

new estimate
̂̂̂
p = ̂̂p = p̂, but now with estimated variance

̂̂̂
p(1 − ̂̂̂

p)/(n1 + n2 + n3). The

opportunities for increased apparent precision here are endless . . .

6. Reject Inference: Mixture Models Mixture models allow use of the XR data

from rejected applications through modeling assumptions on the joint distribution of the

X characteristics and defaults. That is, the rejected applications are certainly informative

on the distribution of X. If an assumption on the relationship between the marginal

distribution of X and the conditional distribution of D given X can be plausibly maintained,

then the distribution of X can be informative on defaults in the rejected sample. Note that

this is a very strong assumption.

To see how this works, suppose the population consists of two groups; “defaulters”

and “non-defaulters,” with population (unconditional) proportions π and (1 − π). The

characteristics X data are generated in the population according to the mixture model

p(x) = πpd(x) + (1− π)pn(x), where pd and pn are the marginal distributions of character-

istics in the default and non-default populations respectively.

The likelihood contribution of the i–th observation from the accepted sample is the

joint probability of default and X for those who default, namely πpd(xi)), and the joint

probability of non-default and X for those who do not, (1 − π)pn(xi)). The contribution

of the j–th observation from the reject sample is the marginal probability of X, namely

p(xj) = πpd(xj) + (1− π)pn(xj), (6.1)

and the likelihood function is the product of the likelihood contributions from both samples.

A parametric model can be selected for each of the pi distributions and these parameters
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can be estimated along with π. The object of primary interest is the conditional probability

of default given x, and this is given by

P (D|X) = πpd(X)/(πpd(X) + (1− π)pn(X)). (6.2)

Feelders (2000) gives an example in which pn and pd are two different normal distributions.

In this example he finds that the mixture approach (known to be the correct model) im-

proves on an approach based on fitting a logistic regression using the complete data. Hand

and Henley (1997) give an assessment similar to ours; without new information, perhaps

in the form of functional form assumptions, reject inference is unlikely to be productive.

To illustrate just how dependent this approach is on functional form assumptions, note

that the model can be estimated, and predicted default probabilities calculated, without

any data whatever on defaults! Closely related techniques go by the names cluster analysis

and discriminant analysis.

How can the data on rejected applicants plausibly be used? The only hope is to get

measurements on some proxy for the dependent variable on default experience. Here,

external data such as credit bureau data may be useful. If the bureau data are available,

and the declined applicant shows an additional credit line, then the payment performance

on that credit line could be used as a measure of the performance of the loan had it been

extended. Of course, there are a number of assumptions that must be made here. These are

practical matters (Was the loan extended similar to the loan that was declined, and do the

loan terms affect the default behavior? Is the bureau information comparable to the data

on existing loans?), but the possibility remains that data could be assembled on rejected

applicants. The requirement here is that payment performance be measured, albeit with

noise. It cannot simply be imputed.

7. Parametric Models The X data used in default models typically contains contin-

uous variables, for example, financial ratios, as well as discrete variables. It is natural to

experiment with parameterized models, for the parsimonious description of the effects of

these variables. A common specification is the logit, in which the log-odds follow the linear

model ln(P (D = 1|x)/P (D = 0|x)) = x′β, where x is a vector consisting of values of the

elements of X and β is a vector of coefficients. This model can be fit to data on accepted

loans. In the absence of bias due to relevant hidden variables and subject to well-known

regularity conditions, the parameter β will be consistently estimated. Under the main-
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tained assumption that the functional form of the relationship between the characteristics

X and the default probability is the same in the accepted and declined samples, predicted

values of the default probabilities in the declined sample are appropriate estimates of the

default probabilities for those observations, and are appropriate for use as a scoring rule

(or part of a scoring rule).

If the selection has been completely at random (MCAR), so the X configuration in the

declined sample is the same as the X configuration in the accepted sample, we are on firm

ground. However, if selection is on the basis of a particular element of x being greater than

x∗, say, then it is a matter of assumption that the effect of x values less than x∗ satisfy the

same relation to default probabilities as x values greater than x∗. This issue is similar to

our example of the binary X used for selection. The default probability can be estimated

only for the value of X selected. Assigning a default probability for the other value of X is

a matter of assumption. Here, we are a little better off, though still relying on assumptions.

Economic relations being what they are, it is probably safe to assume that the effects

of x less than x∗, but near x∗, have the same effect (in functional form) as those greater

than x∗, particularly if the specification has been rigorously checked within the sample and

found to hold for all x greater than x∗. Extending the prediction of default probabilities

for values of x well outside the range of experience is dangerous. However, the loss here

is small; the crucial thing is probably to sharpen prediction around the cutoff. It doesn’t

really matter whether a default probability is 0.6 or 0.7 if loans will be approved only if

the probability is less than 0.05.

8. Advantages of Parametric Modeling Using a parametric model can lead to

substantially more accurate measurement and predictions if the model is adequate. It is

useful to illustrate with a brief example. Let the vector x take values in {x1, x2, ..., xK} = X.

Here each xj is a 1xq row vector with first element equal to 1 (so the model allows a constant

mean probability as a special case – this is good statistical practice) and q − 1 additional

elements with values of individual characteristics. Consider the logistic regression model

with default probability F i for the ith observation (with characteristics xi equal to one of

the xj)

F i = F (xiβ) = 1/(1 + exp(−xiβ)) (8.1)

1− F i = 1/(1 + exp(xiβ))
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The parameter β is a qx1 vector. The likelihood function is where L(β) =
∏
i

(F i)di(1 −
F i)1−di where di = 1 if the ith observation defaulted and zero otherwise. The log-likelihood

is

l(β) =
∑

i di ln Fi +
∑

i(1− di) ln(1− Fi) (8.2)

Now let Dk be the number of defaults at x = xk, and Fk the associated probability F (xkβ)

and Nk the number of observations i with xi = xk. Then

1(β) =
∑

k Dk ln Fk +
∑

k(Nk −Dk) ln(1− Fk) (8.3)

with score function s(β) = 1β(β)

s(β) =
∑

k Dkx
′
k(1− Fk)−

∑
k(Nk −Dk)x

′
kFk (8.4)

using ∂ ln F/∂β = x′F (−xβ) = x′(1− F ). Then

sβ = −∑
k Nkx

′
k∂Fk/∂β (8.5)

Use ∂Fk/∂β = x′k(1− Fk)Fk to get

sβ = 1ββ = ∂21(β)/∂β∂β′ = −∑
k Nkx

′
kxk(1− Fk)Fk. (8.6)

Note that the negative inverse of this non-stochastic matrix is the approximate variance of

the MLE.

Let the xk be ordered so that FK is the highest acceptable default probability (i.e.,

nearest the desired cutoff value for the scoring rule). FK can be non-parametrically

estimated by FK̂ = DK/NK with approximate variance FK̂(1 − FK̂)/NK . Specifically,

N
1/2
K (FK̂ − FK) ≥ N(0, FK(1 − FK)). Consider the alternative estimator F ∗

K = F (xK β̂),

where β̂ is the MLE. Here, under the additional assumption that Nk/N remains fixed,

N1/2(F ∗
K − FK) ≥ N(0, V ), where

V = ∂FK/∂β(−1ββ/N)−1∂FK/∂β′. (8.7)

Recall that ∂FK/∂β = x′K(1− FK)FK and hence

V = xK(
∑

k Nkx
′
kxk(1− Fk)Fk)

−1x′K(1− FK)2F 2
K . (8.8)

The relevant variance comparison is between V/N and (1− FK)FK/Nk.
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As an example we take X = {(1, 1), (1, 2), ..., (1, 20)} = {x1, ..., x20} and Fk = 1/(1 +

exp(−xkβ)). To focus attention on the essential parameter, the second element of β, we

break out the intercept and redefine β and x as scalars, writing xkβ = α+βxk with α = −6.5

and β = 0.3. We consider the accepted sample with x < 12. The cutoff probability

is 0.04 and we are interested for the moment in estimating F11 (the true value at these

parameters is 0.0392). With 1000 observations for each value of x, the standard error of the

nonparametric estimator is 0.00613. The standard error (V/N)1/2 is 0.00441. The precision

of the estimated probability at X = 11 is clearly improved by using the information from

other values of x and the functional form information. For the nonparametric estimator

to achieve the same standard deviation would require a sample size at X = 11 of 1,932,

nearly double the actual. For comparison, if the data at X = 12 were also available, with

1,000 additional observations, the forecast standard error of F11 is reduced to 0.00316. If

instead these additional 1,000 observations were spread evenly between 1 and 11 (values of

X) the standard error would be 0.0042. Thus, values at 12 (near but beyond the cutoff)

are more informative than additional values in the current sample range.

Parametric models also provide, by means of assumptions, a mechanism for out-of-

sample predictions. For example, it is of considerable interest in our example to estimate

F12. Should these loans be made? We can use the in sample data non-parametrically to

estimate F11 (perhaps these loans should not be made) but not F12. On the other hand,

the parametric model can be simply extrapolated to provide an estimate of F12, though

there is no data available to test the accuracy of the fit at X = 12. Thus nonparametric

analysis of loans made can be informative on which loans that were made should not have

been made. However, it cannot say anything about which loans not made should have been

made. This is a clear argument for (cautious) parametric modeling.

9. Dangers of Parametric Modeling Choosing the functional form is a difficult but

standard statistical problem. The usual tradeoff between over-fitting and parsimony arises.

A model that describes the sample exactly is nearly useless for prediction, as we expect

there is noise in the default mechanism and a description of noise does not extend outside

the sample. On the other hand, too much concern for parsimony will lead to forecasting

the default probability by its mean. Not necessarily bad, but clearly improvable.

A simple example can illustrate the effects of misspecification. The type of misspecifica-

tion that we have in mind arises in credit rating and scoring applications precisely because
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the true model’s performance varies for that sub-population which has historically been

excluded (rightly or wrongly) from the bank’s clientele. Suppose the above logit model,

with simple linear log-odds, has been obtained by a modeler after analyzing data on loans

extended under his bank’s historical data (which results in performance information for

loans with X values < 12).

Suppose that the process generating default probabilities has a quadratic effect of x.

That is, suppose that, the “true” process is

Pr(D = 1|X = x) = (1 + exp{−α− βx− γx2})−1 (9.1)

where α = −10, β = 0.87 and γ = −0.025.

These values have been chosen so that most of the nonlinear effect shows up out of the

available sample (X < 12). This is consistent with our interpretation of the missppecifi-

cation of interest.

As we illustrate below, it is reasonable to think that the quadratic term’s influence on

performance would go undetected by the scoring model developer when only performance

data on extended loans with X < 12 have been used in development. While the estimators

for α and β from the misspecified model will be inconsistent, the main questions of interest

relate to the predicted probabilities and the amount of error therein. Clearly, if the range of

historical sample performance available to the modeler regularly included X values for which

the nonlinear effect was significant, we would expect that the true quadratic relationship

would be detected.

To investigate the impact of misspecification, we examine a misspecified model fit to

data on X = 1, 2, ..., 11, and then predict F11 (which can be consistently predicted using

the sample data) and F12 (which cannot). We first report limiting, asymptotic results,

by solving the likelihood equations for the misspecified model (setting their expectation

under the true model equal to zero by choice of parameters of the misspecified model). For

α = −10, β = 0.87 and γ = −0.025 we have F̂11 = 0.033 and F̂12 = 0.052. The true values

are F11 = 0.0306 and F12 = 0.0407. The range of actual and predicted default probabilities

is shown in Figure 1.
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Figure 1: Actual and predicted default probabilities: Asymptotic results.

Figure 2 offers a closer look at the predicted and actual default probabilities for X < 15,

and shows that the in-sample fit is quite good over most of the range:

Figure 2: Actual and predicted default probabilities: closeup; asymptotic

results.

At these probability levels, these are probably values that a bank interested in expanding

its loan portfolio, and willing to take on additional risk to do so, would be interested in

forecasting accurately. That is, the bank currently cutting off at 11 might be interested in

adding loans to applicants with X = 12 or X = 13. If the bank extends 100M$ in loans to

a pool with X = 12, it expects loss based on analysis of the existing sample of F̂ ∗
12100M$ =

5.2M$, but the actual expected loss is F12*100M$ = 4.07M$. Clearly, there is substantial

gain from accurate information about the out-of-sample losses.

In our example, in-sample parametric specification diagnostics will spot this misspeci-

fication if the sample is large. Thus, an asymptotic study along the above lines is feasible

– the test is consistent. The question is, how large is large?
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To investigate this question we use Monte Carlo techniques to run a small sampling

experiment. We generate data from the quadratic logistic model above, fit a linear logistic

model, and calculate predicted probabilities. We also calculate the likelihood ratio test for

the linear vs. quadratic model (asymptotically equivalent to the score test but probably

preferable in smaller samples). In fact, we see that the asymptotic results presented above

can be misleading. The simple linear model is most often not rejected against the quadratic

alternative within the X < 12 12 sample. Furthermore, the within-sample fit is much better

than the asymptotic result, and the out-of-sample predictions are much worse. We use a

model with a single, integer X, with values lower than 12 accepted into the loan sample and

used in estimation. Of interest are the estimates of F11, to verify whether this as a good

cutoff point, and F12, to ask whether additional loans could be made without substantially

increasing risk.

First, we consider the likelihood ratio tests for the linear vs. quadratic models. We take

1,000 observations at each value of x, so each model is estimated with 11,000 observations.

This is certainly a small sample relative to those seen in practice, but keep in mind we

are using only one regressor (typical models in use would use many more). It is our intent

to illustrate the general possibilities for poor sampling behavior rather than to analyze

a particular model in current use. We estimate the model 200 times and calculate the

predicted probabilities in-sample and out-of-sample as well as the likelihood ratio test for

the significance of the quadratic term. The mean “p-value” is 0.296. If we test at the

0.10, 0.05 and 0.01 nominal significance levels we reject the linear model 33.5 percent, 23.5

percent, and 9.0 percent of the time respectively. Thus, the wrong model would probably

not be rejected in practice. The predicted (mean) and actual probabilities are shown in

Figure 3.

Figure 3: Actual and predicted default probabilities: sampling results.
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A closer look at the lower values of x shows that the within-sample fit is in fact quite

good, although we have seen that the misspecification will be detected asymptotically.

Figure 4: Actual and predicted default probabilities: closeup; sampling

results.

The asymptotic results on misspecification well characterize the sampling behavior of

the estimators in the misspecified model. Here the estimates of F11 and F12 (recall the

true values are 0.0306 and 0.0407) are 0.033 and 0.052. Thus the barely out-of-sample loss

is overestimated, perhaps discouraging the bank from making good loans. The nonpara-

metric estimators are FNP
11 = 0.030 and FNP

12 = 0.041. The former is feasible under our

assumptions, the latter is not, since no loans are extended for X = 12, but we include this

calculation to show the utility of additional, nonparametric information.

Box plots showing the distribution of the errors in the predicted probabilities are shown

in Figure 5.
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Figure 5: Forecast Errors of a Misspecified Logistic Model: Monte Carlo

Calculations (Misspecified Model Developed with X < 12.

Note that, as expected, the prediction error is worse in terms of location and has higher

variance as we predict farther out of the sample.

These conclusions generalize naturally to other examples not considered here. If we had

considered and example where the non-linearity of the true model became significant only

at more extreme values of X (those much greater than 12), it would be harder to detect, but

it also would have less impact upon the bank’s decisions at the margin of it’s business. On

the other hand, if we had considered an example where the nonlinear its occurred deeper

within range of data covered by historical sample, it would have been easier to detect, and

the issues of misspeficication, hopefully, moot.

In fact, there are a wide variety of model selection mechanisms. A talented modeler,

who will examine the fits of various models, logit and others, with different transformations

of the variables, is invaluable. Automatic methods such as neural nets (a form of nonlinear

regression) and other methods with automatic variable selection rules can also lead to good

models for in-sample fits. However, note that a model selection procedure based upon

pretesting logistic regressions may reduce, but not necessarily eliminate the type of model

selection errors we discuss.
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10. Experimentation The bank is interested in precisely estimating default proba-

bilities that are near the cutoff in the selection rule. Lending at this margin can give a

bank its competitive edge. There are two issues: First, is the minimum acceptable default

probability (in our example, the one for applicants at F11) well measured, and should loans

continue to be made to these applicants? Second, should loans should be extended to the

applicants considered marginally unacceptable — in our example, the applicants at F12,

and is F12’s probability well forecast?

Note that the probabilities for F11 and F12 are estimated differently. There is direct

data information on F11; it can be estimated nonparametrically as well as parametrically,

and specification errors can be detected, though this can be difficult in practice, as we have

seen. There is no direct data information on F12. It is not nonparametrically identified and

can only be estimated with parametric assumptions.

Given the importance of correct measurement of these probabilities, the bank can be

expected to devote considerable resources to getting these right. One way to devote re-

sources to this effort is to make some loans at X = 12. Suppose the same number of loan

dollars are spread out from X = 1 through 12, instead of from X = 1 through 11. This will

probably result in a riskier portfolio, since it is suspected that loans at X = 12 are riskier

than at X < 12. On the other hand, it is unlikely that loans at X = 12 are much riskier

than at X = 11. Of course, the potential gain is that the improvement in measurement of

F12 will reveal that these loans are indeed acceptable to the bank and should be made.

Note that the area of interest is the one around the cutoff value. Large changes in the

selection rule are unlikely to be prudent. A good strategy would be to collect information,

make small changes, re-estimate, etc. This suggests that loans at X = 12 should not

simply be substituted for those at X = 11; the X = 11 information is also critical to the

measurement of risk at the cutoff. On the other hand, shifting portfolio dollars from X = 11

to X = 12 loans is cheaper than other shifts; why reject loans that are obviously profitable?

We therefore consider this alternative strategy briefly after reporting our analysis of the

initial experiment.

We consider the strategy of adding loans at X = 12 by reducing the level of loans evenly

across all other values of X. First, we do the asymptotic analysis. Here the sample size

itself is irrelevant, though the even distribution of X across its possible values does affect

the results. The most relevant probabilities are F P
11 = 0.0299 and F P

12 = 0.0454. Again,

the true values are 0.0306 and 0.0407, so there is unambiguous improvement from adding
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this information at X = 12 (recall that the previous sample predicted F12 = 0.052). The

predicted and actual probabilities over the whole range are shown in Figure 6.

Figure 6: Performance of a Misspecified Logistic Model: Asymptotic

Calculations (Misspecified Model Developed with X < 13

Next we turn to the sampling experiment. The total sample size for estimation remains

the same, and we can directly compare the information value of observations at X = 12

with that contained in the same number of observations distributed across all other levels

of X. We now have 917 observations for each value of X = 1, 12. The resulting predicted

probabilities F P
11 and F P

12 are 0.0301 and 0.0458 (recall the true values are 0.0306 and

0.0407) Thus, the additional information from the X = 12 observations substituted for

some of the previous in-sample observations is indeed valuable, substantially improving the

measurement of these probabilities. The nonparametric estimates are FNP
11 and FNP

12 =

0.031 and 0.041 respectively, now both feasible and clearly providing valuable information.

The p-value for the LR test now has mean 0.20 and the linear model is rejected in favor of

the quadratic at the 0.01, 0.05, and 0.10 nominal levels respectively 18.5 percent, 36 percent,

and 49 percent of the time. Note that the additional information has both sharpened the

estimates of F11 and F12 and improved the power of the specification test. The range of

predicted and actual probabilities is show in Figure 7. Figure 8 provides a close–up.
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Figure 7: Performance of a Misspecified Logistic Model: Monte Carlo

Calculations (Misspecified Model Developed with X < 13)

Figure 8: A Close-Up View: Performance of a Misspecified Logistic Model:

Monte Carlo Calculations (Misspecified Model Developed with X < 13)

Once again the asymptotic results provide a good guide to the sampling performance of

the estimators in the misspecified model. The box plot for the prediction errors is shown

in Figure 9.
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Figure 9: Forecast Errors of a Misspecified Logistic Model: Monte Carlo

Calculations (Misspecified Model Developed with X < 13)

As we have seen before, the prediction errors are worse as we move away from the

sampled values of characteristics X.

What is the cost of this experiment in terms of added loan portfolio risk? The average

loan default probability with the cutoff at X < 12 was estimated to be 0.0080 and the

average probability with the cutoff at X < 13 was estimated at 0.0117 before the addi-

tional data were accumulated. With the new estimates, the values are 0.0078 and 0.0110

respectively. The actual risk values are 0.0082 and 0.0109. The actual difference in risk is

less than expected on the basis of either set of estimates, yet the addition is substantial.

An alternative experiment would continue to extend obviously good loans to the extent

possible and to substitute loans at X = 12 for those at X = 11. The loans are substituted

to keep the outstanding loan balance constant and hence make a fair comparison of the

information value of the portfolio experience. Although X = 11 loans are informative of

behavior around the cutoff, and are therefore potentially important, the real key is the

addition of the X = 12 loans.

The asymptotic results give F P
11 and F P

12 as 0.0296 and 0.0449 (true 0.0306 and 0.0407)

so there is clear improvement over the case in the X < 12 sample and indeed even over the

case of the X < 13 sample with an even distribution. Thus, from this point of view, the

addition of the new “extreme” value X = 12 made the X = 11 observations less relevant

than the observations for lower values of X. Of course, this point cannot be pushed too
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far; with no observations at X = 11 there is no nonparametric information on the default

probability at that value.

Turning to the actual Monte Carlo results, we find that F P
11 = 0.0296 and F P

12 = 0.0452.

These are quite good results as compared with the sample from X < 12 and indeed the

sample with X < 13 and spread observations. Because the graphs of predicted and actual

probabilities are similar to those we have seen, they are omitted. Prediction errors get

worse in terms of both location and variance as predictions occur farther away from sampled

values. The likelihood ratio test shows improved performance. Rejections at the nominal

0.10, 0.05, and 0.01 levels are 53.5 percent, 40.0 percent, and 25.0 percent respectively.

Thus the new, spread-out sample is informative about specification error.

Finally, we compare the risk of the portfolio with loans at X < 12 with the portfolio

of loans at X < 13 and X = 11. The former we have calculated as 0.0082 (actual); the

latter is 0.0091 (actual), a reduction from 0.011 at the spread-out sample. The less risky

experiment is at least as informative as the riskier and is therefore clearly preferable.

While it is always speculative to generalize from examples, this analysis suggests that

moving loans made near the current margin in the scoring cutoff just across the margin

to accumulate information may be a sensible strategy. The information gain is consid-

erable. The new information is particularly relevant to picking up misspecification that

could go unnoticed within the current data range but which is important for assessing the

performance of a scoring rule.

11. Conclusions This paper has emphasized key conceptual issues in the context of

a stylized model of estimation and decision making. The distinction between parametric

and nonparametric identification is illustrated with examples. We emphasize that there

are two asymmetric questions one may ask of the data. First, should some of the loans

with performance measures near the critical values not have been made? That is, should

the critical value be adjusted so that some of the loans currently being approved will not

be approved in the future. This question can be answered with data on current loans.

Second, should some declined loan applications with estimated performance measures near

the critical value have been approved? This question is much more difficult to answer,

because one must use parametric assumptions if data comes solely from current loans. We

illustrate some of the difficulties involved here, and emphasize the importance of in-sample

specification checking. As a practical matter, additional data is invaluable. We illustrate
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some advantages of experimentation using loan applications with estimated performance

measures near critical values. Modelers may be able to design experiments that, while not

too costly in terms of portfolio performance, are extremely informative about the optimal

loan decision procedure.

To conclude on a practical note, the actual process is not designed de novo, but is one

in which procedures are changed (possibly even improved) by collecting additional data.

Modeling this activity as a dynamic process, in which models are updated sequentially and

experiments can be designed sequentially according to the likely value of the additional

data, is the subject of a follow–up paper.
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