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Buckely–James–type estimators in

classical–cohort studies ∗

Menggang Yu†and Qiqing Yu ‡

Abstract

We consider the estimation problem with the classical case-cohort data. The clas-

sical case–cohort design was first proposed by Prentice (1986). Most studies focus on

the Cox regression model. In this paper, we consider the censored linear regression

model. We propose several simple estimators which extend the Buckley–James esti-

mator to the classical case-cohort design. We further carry out simulation studies to

compare the asymptotic properties of these simple estimators under different sample

sizes, underlying distributions and various subcohort sizes. We also perform data

analysis to a real data set and compare to existing results in the literature. A proof

of the consistency and asymptotic normality is given in Appendix under some simple

regularity conditions.

1. Introduction We consider the estimation problem under the classical case-cohort

designs and censored linear regression models. Many epidemiological cohort studies and

disease prevention trials try to investigate the effects of certain covariates for relatively

rare disease. As a result, the cohort must be large to provide informative conclusion about

the covariate effects. It is often expensive to collect covariates of interest which might

involve, for example, biochemical analysis of specimens. In order to lessen this burden
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without much loss of efficiency, Prentice (1986) proposed the classical case-cohort design,

under which, one observes all covariates for each subject experiencing an event and for

each from a random sub-sample of the cohort, selected at the beginning of the study (call

a subcohort). The classical case-cohort design does not recorded any survival information

for censored patients outside subcohort. This needs to be contrasted with the modified

case-cohort design (Chen, 2001) under which the censoring times of all censored subjects

in the cohort are observed. For some literature review of case-cohort designs, we refer to

Yu, Wong and Yu (2005) and Yu and Yu (2006).

Among the four regression techniques for censored data, Miller and Halpern (1982)

concluded that the Cox and the Buckley-James estimators are “two most reliable regression

estimates” and that “the choice between them should depend on the appropriateness of

the proportional hazards model or the linear model for the data.” While Cox’s model has

been studied in the case-cohort designs, the Buckley-James-type of estimator has not been

investigated until recently.

The estimation problem under the censored linear regression models with the case-

cohort designs can be formulated as follows. Let Yi and Ci be monotonically transformed

failure and censoring times obtained from a known transformation. The log transformation

is often used in practice to give the accelerated failure time model (see, e.g., Kalbfleisch

and Prentice, 2002). For subject i in the full cohort, let Mi ≡ Yi ∧Ci and δi ≡ 1(Yi ≤ Ci).

Let Xi be a vector of p-dimensional covariates. The model is Yi = β′Xi + εi, i = 1, ...,

n, where β′ is the transpose of a regression coefficient vector β. We shall further simplify

notation and write βX = β′X. In general, we assume εi has an unknown cdf Fo. E(εi) may

or may not be zero, which is not important, as in general E(εi) is not identifiable under

right censoring (Lai and Ying, 1991). If either subject i is in the subcohort or the event of

interest has taken place, then we observe (Mi, δi,Xi). Otherwise, we do not observe both

Mi and Xi in the classical design and only observe Mi in the modified design.

Yu, Wong and Yu (2005) propose an extension of the Buckley-James estimator (BJE)

under the censored linear regression model and the classical case-cohort design. The BJE

depends on the estimators of the underlying distributions. They propose to estimate the un-

derlying distribution functions by the generalized maximum likelihood estimator (GMLE)

and propose a self-consistent algorithm for the GMLE. No proof of the asymptotic dis-

tribution of the BJE is given. While the BJE is obtained by an iterative algorithm, the

GMLE depends on the regression parameter and can only be obtained iteratively. Thus
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their approach is time consuming.

We shall find simpler extensions of the BJE under the classical case-cohort design setting

and propose an algorithm for finding such estimates. For convenience, we call all of them

the BJE’s. We study them via simulation using different underlying distributions. We

also construct a proof of asymptotic properties of a BJE under some simple regularity

conditions. The idea in our proof can also be used to establish the asymptotic properties

of the estimator studied in Yu, Wong and Yu (2006). In an unpublished manuscript, Yu

and Yu (2006) also study this estimation problem under the modified case-cohort design.

The estimators and the proofs of its asymptotic properties under the modified case-cohort

design have some subtle differences from those under the classical case-cohort design due

to different model assumptions.

The asymptotic properties of various extensions of the BJE under general continuity

assumptions and under both case-cohort designs remain an outstanding problem. This

applies to the BJE based on the GMLE, as well as to the BJE based on the simple estimators

of the underlying distribution functions. In this paper, we are only able to construct a proof

of the asymptotic properties of the extension of the BJE under a simple discrete assumption

on the underlying distributions.

The paper is organized as follows. Section 2 introduces how to extend the BJE to the

classical case-cohort design. Section 3 discusses various ways of estimating the underlying

distribution functions which are needed in the extension of the BJE. Section 4 introduces

an algorithm for the BJE and Section 5 discusses how to estimate the covariance ma-

trix. Section 6 presents some simulation results on comparison of the BJE-type estimators

and Section 7 presents a data analysis with a real data set. A proof of consistency and

asymptotic normality is given in Appendix.

2. Buckley-James Estimators. In this section we propose a way of using the Buckley-

James-type of estimators in analyzing classical case-cohort data. Thus, in additional to

the random variables introduced for the usual censored linear regression model, we need

to introduce a subcohort indicating random variable ηi such that ηi = 1 if subject i is

selected to be in the subcohort and 0 otherwise. Let Ti = Ti(b) = Mi − bXi. Let

(Mi, δi,Xi, Ci, εi, Ti, ηi), i = 1, ..., n, be i.i.d. copies of (M, δ,X, C, ε, T, η). Hereafter,

unless we point out, by case-cohort data, we mean the data from the classical case-cohort

design. If an individual either is in a subcohort or experiences the event of interest, that
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is, either ηi = 1 or δi = 1, then Xi is measured and thus observed. Otherwise, (Mi,Xi) is

missing. It is shown (see e.g., Li and Pu (1999) or Appendix II) that the BJE is somewhat

a zero point of a modification of the score function with the censored linear regression data

making use of the assumption, ε ∼ N(µ, σ2).

We shall assume that

A1 η, ε and (C,X) are independent and P{η = 1} > 0.

The identifiability assumption made under the simple linear regression with complete data

is P{X1 6= X2} > 0, where X1, X2, ..., are i.i.d. copies of X. Under our set-up, it becomes,

A2 P
{

δ1 = δ2 = · · · = δp+1 = 1, rank

(
1 · · · 1

X1 · · · Xp+1

)
= p + 1

}
> 0.

Note that Scheike and Martinussen (2004) replace A1 by the following assumption.

A3. The random variables ε, X and C are independent.

We also make use of the following regularity condition.

A4. P{ε + β′X = C} = 0.

It is worth mentioning that under the assumption that all underlying distribution functions

are continuous, assumption A4 is satisfied automatically, but not so otherwise. Kong and

Yu (2005) construct an example that the BJE is not asymptotically normally distributed

under the full cohort censored linear regression model. In general, we assume Fo is arbitrary,

which may or may not be continuous.

Notice that the full nonparametric likelihood function at b = β is

L =
∏n

i=1

{
fo(Ti(β))

∫
c≥Mi,x=Xi

dF
C,X(c,x)

}δi
{

So(Ti(β))f
C,X(Mi,Xi)

}(1−δi)ηi

(2.1)

×
∏n

i=1

{∫
c∈R,x∈Rp So(c− βx)dF

C,X(c,x)
}(1−ηi)(1−δi)

×
∏n

i=1 qηi(1− q)1−ηi ,

where q = P{η = 1} and (Mi,Xi, Ti)
′s are realizations, F

C,X and f
C,X are the cdf and

the density function of (C,X). Yu, Wong and Yu (2005) show that after centering to an

estimate of µx (= E(X)), say X̃, the score function is

∂lnL
∂β

= σ−2
∑

i/∈K

{
δiTi(β)− (1− δi)

R
t>Ti(β) tdSo(t)

So(Ti(β))

}
(Xi − X̃)

−σ−2
∑

i∈K

P
c,x

R
t>c−βx tdSo(t)f

C,X(c,x)(x−fX)P
c,x So(c−βx)f

C,X(c,x)
(2.2)

def
= σ−2H(β, So, fC,X, X̃),

where K = {i : ηi + δi = 0}.
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Mimicking the BJE under the full cohort studies (Buckley and James, 1979), we should

now replace So, f
C,X in Eq.(2.2) by proper estimators, say S̃β and f̃

C,X,β
to obtain an esti-

mating equations. Of course, they all depend on the unknown true parameter β. However

for each given b, one can find these estimators pretending β = b. A BJE may be defined

to be a root of H̃, where H̃(b) = H(b, S̃b, f̃
C,X,b, X̃). Similar to the full cohort case,

H̃(b) may not have a root, then a BJE is a point at which H̃(b) changes its sign (called a

zero-crossing ) (see James and Smith, 1984). Noticing that for any subject i ∈ K, the last

term in (2.2) is the same, we can express our estimating equation as

H̃(b) =
∑

i/∈K

{
δiTi(b)− (1− δi)

R
t>Ti(b)

tdS̃b(t)

S̃b(Ti(b))

}
(Xi − X̃) (2.3)

−nK

P
j,k 6∈K

P
t>Mj−bXk

t dS̃b(t)f̃
C,X,b(c,Xk)(Xk−

fX)P
j,k 6∈K S̃b(Mj−bXk)f̃

C,X,b(c,Xk)
,

where nK is the number of subjects in K. Careful readers might notice that in (2.3), we also

need to come up with a X̃ to estimate E(X). We can use X̃ =
∑

c,x xf̃
C,X(c,x) or use either

the mean of X among subcohort subjects (i.e. among subjects with η = 1) or we can use all

observed X, then a sensible estimate for the latter is X̃ = n−1
∑n

i=1(δixi+ηi(1−δi)xi∗n/n1),

where n1 is the size of subcohort. This idea of weighting any censored subject in the

subcohort by ratio of full cohort size over subcohort size is natural and also crucial for

providing sensible estimates of So and f
C,X in Section 3.

Notice that for full cohort studies (i.e. K = ∅), after replacing X̃ by X = 1
n

∑n
i=1 Xi

and replacing So by the PLE Ŝb based on (Ti(b), δi)’s, we have the original Buckley-James

estimating equation

Ĥ(b) =
n∑

i=1

{
δiTi(b)− (1− δi)

∫
t>Ti(b)

tdŜb(t)

Ŝb(Ti(b))

}
(Xi −X). (2.4)

Remark 1. A naive approach is to construct the BJE based on the subcohort data

alone. Since the subcohort follows the linear regression model with right-censored data,

the asymptotic properties of the BJE is well established, though the BJE is not efficient,

because it does not utilize the information not contained in the subcohort. We shall call

this estimator Subcohort BJE or β̂1 in the simulation results of Section 6.

Remark 2. A second naive approach for extension of the BJE is to utilize partial likelihood,

or  ̃L =
∏

i/∈K

{
f(Ti(b))δiS(Ti(b))(1−δi)

}
. Then, a solution is the zero-crossing of Ȟ(b) =
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∑
i/∈K(Xi − X̃)T ∗

i (b), where X̃ =
∑

i/∈K Xi/n2, n2 is the number of observations with

ηi + δi ≥ 1, and T ∗
i (b) =


Ti(b) if (1) δi = 1P

t>Ti(b)
tf̂b(t)

Ŝb(Ti(b))
if δi = 0, ηi = 1

. Here Ŝb is the PLE of S based

on {(T ∗
i (b), δi) : δi + ηi ≥ 1} and f̂b(t) = Ŝb(t−) − Ŝb(t). We refer this approach as

partial likelihood BJE β̂2 in the simulation section. The simulation results suggest that the

estimator is not consistent. Verify that the expression Ȟ in Remark 2 is the same as Ĥ in

(2.3).

3. Estimation of Underlying Distributions. A logical approach for estimating So

and f
C,X is to find the generalized maximum likelihood estimator (GMLE). That is, an

estimate of (So, fC,X) that maximizes L in (2.1) over all possible estimates, with given

b. Yu, Wong and Yu (2006) study the problem. There is no closed form solution for the

GMLE and they propose a numerical algorithm to find it. Their approach may not be

feasible for large sample sizes, as the number of parameters may be too large, especially

when all the time points are distinct.

We shall now discuss how to estimate So and f
C,X with a simple approach which has

an explicit expression. To further simplify (2.2), as in Scheike and Martinussen (2004), we

assume A3. Under this assumption, we have f
C,X = fCfX. The advantage is that we only

need to estimate the univariate fX and fC instead of the bivariate f
C,X.

A desirable estimator of So and fX should utilize all available data. A quick way to

do this is to estimate fX using empirical density function and to estimate So and FC

using Kaplan-Meier method based on (Ti(b), δi), i /∈ K. By reordering, without loss of

generality (WLOG), assume that the first n2 observations do not have missing X. Then

Ŝb(t) =
∏

T(j)(b)≤t

{
1 − δ(j)

n2−j+1

}
, where T(1)(b) ≤ · · · ≤ T(n2)(b) are order statistics of

T1(b), ..., Tn2(b), δ(j) is the δi associated with T(j)(b); f̂X(x) =
∑

i/∈K 1(Xi = x)/n2. More-

over, F̂C(c) = 1−
∏

M(i)≤c{1−
1−δ(i)

n2−i+1
}, where M(1) ≤ M(2) ≤ · · · ≤ M(n2) are order statistics

of Mj’s. We shall call the extension of the BJE resulted from such Ŝb and f̂X naive BJE

or β̂3 in our simulation results.

However due to the fact that we are observing X only if δ + η > 0, hence the chance

of non-missing for failure group is higher than that for censored group. Naive way of

estimating So, FC and fX without taking this fact into consideration will likely result in
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inconsistent estimators and our simulation results in Section 7 suggest that this is indeed

so. One way to correct for potential bias is through weighting. The specific weight for

each observation i is taken to be wi = δi + w(1 − δi)ηi where w can be chosen either

as n/n1 or n3/n4 where n3 = n −
∑n

i=1 δi is the total number of censored subjects and

n4 =
∑n

i=1 ηi(1−δi) is the number of censored subjects in the subcohort. In our simulation

study, we use n3/n4. Our proposed estimators are then

F̃X(x) = 1
n

∑n
i=1 wi1(Xi ≤ x),

S̃b(t) =


∏

tj≤t(1−
dj

Rj
) if t < τ1 + 1,

0 if t ≥ τ1 + 1,
(3.1)

F̃C(c) =

1−
∏

sj≤c(1−
cj

Uj
) if c < τ2,

1 if c ≥ τ2,

where τ1 = maxj tj, dj =
∑n

i=1 δi1(Ti(b) = tj), Rj =
∑

i/∈K wi1(Ti(b) ≥ tj), τ2 = maxj Mj,

cj =
∑

i/∈K wi1(Mi = sj, δi = 0), and

Uj =
∑
i/∈K

wi

[
1(Mi > sj, δi = 1) + 1(Mi ≥ sj, δi = 0)

]
,

with t1 < t2 < · · · are all the distinct values among Ti(b)’s with δi = 1, s1 < s2 < · · · are

all the distinct values among Mi’s with δi = 0 and i /∈ K, and in order to avoid degenerated

case, we define wi = 1 if n1 or n3 = 0.

Remark 3. Note that when the largest residual, say T(n2)(b), is right censored, sinceP
t>Ti(b)

tf̂b(t)

Ŝb(Ti(b))
in (2.3) is not defined, Buckley and James treated it as an exact one, then

Ŝb puts the tail weight to the T(n2). To avoid the complexity in the proof, we define in (3.1)

that Ŝb puts the tail weight to T(n2) + 1. Both conventions do not affect the asymptotic

properties of the BJE of β.

In an obvious way, denote f̃C , f̃b and f̃X the density functions corresponding to F̃C ,

S̃b and F̃X, respectively. In Lemmas 1, 2 and 3 of Appendix I, we show that under certain

regularity conditions, S̃b, F̃C , and F̃X are consistent. Define f̃
C,X = f̃C f̃X and

H̃(b) = H(b, S̃b, f̃
C,X, X̃) where X̃ =

∑
x

xf̃X(x), (3.2)

that is, X̃ = 1
n

∑n
i=1 wiXi. The Buckley-James-type of estimator is a zero-crossing of H̃(b).

We call it the weighted BJE or β̂4 in our simulation results of Section 6.
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In summary, we have considered four estimators under the classical case-cohort design.

They are subcohort BJE (β̂1), partial likelihood BJE (β̂2), naive BJE (β̂3), and weighted

BJE (β̂4). To gain intuition behind these estimators, we bring readers attention that there

are two estimating procedures involved. One pertains to the treatment of likelihood and

resulting estimating function, and the other concerns estimating the underlying distribu-

tions to be plugged into the estimating function. The difference of these four parameters

lies in either one or both of these two procedures. The subcohort BJE utilizes the only

data in subcohort for likelihood and estimation of underlying distributions. It has a sole

effect of reducing sample size. Hence it is easy to implement using existing software for

full cohort BJE (see e.g. Stare et. al. 2001). As long as the subcohort is representative of

the full cohort, β̂1 will be consistent. This is the case when in particular simple random

sampling is used to select subcohort members. However there is necessarily efficiency loss.

On the other hand, the partial likelihood BJE uses all the available data for likelihood

and estimation of underlying distributions. This should increase efficiency. However due

to over-sampling of failure, β̂2 is inconsistent. The naive BJE attempts to correct partially

for such biased sampling by using full nonparametric likelihood. However in estimating

underlying distributions, it proceeds like the partial likelihood BJE. This also introduces

bias. The weighted BJE avoids this problem by using both full nonparametric likelihood

and weighted KM estimate for the underlying distributions. Intuitively, β̂4 should have best

performance. All these points seem to be confirmed by our simulation study in Section 6.

4. Computation and Algorithms. We present in this section the algorithm for the

BJE with respect to H̃. Since Ti(b) = Mi − bXi for i /∈ K, one can verify that H̃ in §3
becomes

H̃(b) = A(b)− B(b)b, (4.1)
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where A =
∑

iAi(b), B =
∑

i Bi(b), and for i = 1, ..., n,

Ai(b) =

{
Miδi + (1− δi)ηi

∑
t>Ti(b)

f̃b(t)

S̃b(Ti(b))

P
h/∈K Mhδh1(Th(b)=t)P

h/∈K δh1(Th(b)=t)

}
(Xi − X̃) (4.2)

+1(i ∈ K)

P
j,k/∈K

(P
t>Mj−bXk

f̃b(t)

P
h/∈K Mhδh1(Th(b)=t)P

h/∈K δh1(Th(b)=t)

)
f̃C(Mj)f̃X(Xk)(Xk−

fX)P
j,k/∈K S̃b(Mj−bXk)f̃C(Mj)f̃X(Xk)

,

Bi(b) = (Xi − X̃)

{
Xiδi + (1− δi)ηi

∑
t>Ti(b)

f̃b(t)

S̃b(Ti(b))

P
h/∈K Xhδh1(Th(b)=t)P

h/∈K δh1(Th(b)=t)

}′

+1(i ∈ K)

P
j,k/∈K

(
f̃C(Mj)f̃X(Xk)(Xk−

fX)
P

t>Mj−bXk
f̃b(t)

P
h/∈K X′

hδh1(Th(b)=t)P
h/∈K δh1(Th(b)=t)

)
P

j,k/∈K S̃b(Mj−bXk)f̃C(Mj)f̃X(Xk)
.

Verify that A is a p× 1 dimensional vector and B is a p× p dimensional matrix,

Algorithm (for the BJE with case-cohort data). Give an initial value to β, say b0.

For k ≥ 1, update bk−1 by bh =
{
B(bk−1)

}−1A(bk−1). Stop either at the convergence (i.e.,

||bk−bk−1|| is very small), or at the case that bk oscillates between two or more values. In

the latter case, take the midpoint of the last two values, say bk and bk−1, as an estimate

of β.

Remark 4. It is well known that in the case when the algorithm oscillates, the algorithm

may not result in a solution of the BJE. However, if the two oscillating points are close,

the estimate resulted from the algorithm can be viewed as an approximation of the BJE.

Finally, if the two oscillating points are far apart, then one can graph the function H̃(b)

between the oscillating points to find a zero-crossing of H̃(b) if p = 1.

5. Variance Estimation of the BJE. Under the assumption that ε has a normal

distribution, since the BJE is efficient in the censored regression data case, we expect that

the BJE is also efficient in the case-cohort case, though of course the efficient lower bound

is different. Based on this belief, we may use the inverse of the Fisher information matrix

as the estimate of the covariance matrix of the BJE:

Σ̂β̂ = (Î)−1, where Î =
n∑

i=1

{
(Ai(β̂)− Bi(β̂)β̂)(Ai(β̂)− Bi(β̂)β̂)′

}
σ̂−4, (5.1)

σ̂2 is an estimator of V ar(ε).

If Fo is not normal, then the estimator (Î)−1 is no longer valid, as the BJE is not efficient

in this case. Our simulation results indicate that even under the exponential distribution

the approximation seems quite good.
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The asymptotic variances of the estimators we have established in this paper are all

different. One can use the delta method to obtain the asymptotic variance for the weighted

BJE using the argument given in the proof of Theorem 1 in the Appendix I. However, the

expression is quite long.

6. Simulation Studies. In this section, we present some simulation study results

for evaluating our proposed estimator β̂4 (weighted BJE, see Section 3) under various

sample sizes and various distributions. According to the results established in Lai and

Ying (1991), we expect our estimator to be efficient under the normal assumption and

consistent in general. In Appendix I, we establish consistency and asymptotic normality

for the BJE with discrete distribution assumptions. In this section, we shall present three

sets of simulation results on our proposed estimators under continuous distributions and

under assumption A3. The simulation is performed on a Pentium III workstation. In each

simulation study, we had 1000 replications and computed the sample mean and sample

standard error (SE) of the 1000 estimates. The computation is quite fast, it only takes a

few seconds for a sample size of 800.

As discussed in section 3, different ways of estimations of So and fX can be used

and the choices may affect the performance of BJE. To demonstrate this, we use both

our proposed weighted estimators β̂4 and naive estimators β̂3 of So and fX and compare

resulting estimators of the regression parameter β. We also compare them to the partial

likelihood BJE β̂2 (see Remark 2) and the Subcohort BJE β̂1 based on the subcohort data

alone (see Remark 1). In the literature, all the studies are not based on the linear regression

model, in particular, most studies are based on the Cox regression model. It is well known

that under the linear regression model if the underlying distribution is normal then the

distribution does not follow the Cox regression model. Consequently, in our simulation,

it is not appropriate to compare our estimates to the estimates under the Cox regression

model, as well as the estimates under other models.

Hereafter Exp(µ, σ) denotes an exponential distribution with the pdf

f(x) = 1
σ
e−[x−µ

σ
+1]1(x > µ− σ). We consider 3 different cases.

Case 1 (censored-data under a normal distribution).Suppose ε ∼ N(0, 1) (the normal

distribution), C ∼ N(0, 1) and X ∼ Exp(1.25, 1.25). q =P{η = 1} = 0.2. β = 1. Results

are listed in Block 1 of Table 1.

Case 2 (censored-data under a normal distribution).Suppose ε ∼ N(1, 1), X ∼ U(0, 1)
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(the uniform distribution) and C ∼ Exp(1, 1). q = 0.5. β = 1. Results are listed in Block

2 of Table 1.

Case 3 (censored-data under an exponential distribution).Suppose ε ∼ Exp(1, 1), X ∼
U(0, 1) and C ∼ Exp(1, 1). q = 0.7. β = 1. Results are listed in Block 3 of Table 1

and in Table 2. In Table 2, the entries corresponding to σ̂β̂ are the sample averages of the

estimates of standard deviation of the BJE based on formula (5.1). SE is the standard

error of the BJE or the estimate of σβ̂ in 1000 simulations.

The simulation results in Table 1 suggest that the weighted BJE β̂4 is consistent under

both the normal distribution and the exponential distribution, as β is within the interval

(β̂4 − 2SE, β̂4 + 2SE) and the SE decreases, as n increases.

Furthermore, they confirms that the weighted BJE β̂4 with the full likelihood is better

than the naive BJE β̂3 and the partial likelihood BJE β̂2. This can be viewed as follows.

Even though it is seen from Table 1 that β̂3 and β̂2 have smaller standard errors than

β̂4, it is seen from the second block of Table 1 that the β̂3 is steadily getting close to 1.2,

and is quite different from β = 1, in fact, in another simulation with sample size n = 3000,

the sample mean is 1.24 with SE of 0.10, thus the estimate is significantly different from

β = 1, thus it suggests that the naive BJE is inconsistent. Moreover, we can see from

Block 1 of Table 1 that β̂2 is steadily getting close to 0.82, in particular, when n = 1600,

its sample average is 0.822 with a SE of 0.064, thus it is significantly different from β = 1.

This suggests that these two estimators are inconsistent. It is seen that β̂2 does behavior

pretty good in the other two cases. The major difference is q = 0.2 in the first block of

Table 1 whereas q ≥ 0.5 in the other two blocks.

On the contrary, β̂4 is getting close to β in all the three cases. In all the three cases,

it is seen that BJE β̂4 is more efficient that the BJE β̂1 based on subcohort alone, as one

expects. One also expects that the BJE is efficient under the normal assumption, thus it

is appropriate to use formula (5.1) as an estimate of the standard deviation of the BJE.

It seen from Table 2 that even under the exponential distribution, the estimator of σβ̂4
by

formula (5.1) matches its standard errors quite well.
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Table 1. Comparison On Four BJE Methods

Under N(0,1) With q = 0.2

n β Naive(SE) Weighted (SE) Partial (SE) Subco (SE)

100 1 1.094(0.332) 0.994(1.500) 0.867(0.280) 1.412(1.822)

200 1 1.107(0.235) 1.019(0.420) 0.836(0.195) 1.130(0.575)

400 1 1.136(0.169) 0.997(0.206) 0.830(0.133) 1.054(0.318)

800 1 1.149(0.124) 0.992(0.128) 0.825(0.092) 1.016(0.208)

Under N(1,1) With q = 0.5

n β Naive(SE) Weighted (SE) Partial (SE) Subco (SE)

100 1 1.205(0.957) 0.912(1.042) 0.957(0.500) 0.992(0.669)

200 1 1.205(0.418) 0.964(0.388) 0.951(0.343) 0.979(0.464)

400 1 1.227(0.303) 0.984(0.273) 0.947(0.242) 0.999(0.327)

800 1 1.242(0.206) 0.994(0.187) 0.945(0.169) 1.002(0.229)

Under Exp(1,1) With q = 0.7

n β Naive(SE) Weighted (SE) Partial (SE) Subco (SE)

100 1 1.137(0.349) 0.969(0.335) 1.015(0.336) 1.004(0.393)

200 1 1.141(0.238) 0.988(0.223) 1.008(0.222) 1.002(0.263)

400 1 1.146(0.168) 0.998(0.157) 1.006(0.156) 1.002(0.182)

800 1 1.143(0.123) 0.996(0.114) 1.000(0.113) 1.001(0.135)

Table 2. Variance Estimation

Under Exp(1,1) Distribution With q = 0.7

SE of BJE β̂4 comparing to estimator σ̂β̂4
(SE)

n SE of β̂4 σ̂β̂4
(SE)

n=100 0.335 0.417 (0.109)

n=200 0.223 0.277 (0.051)

n=400 0.157 0.189 (0.025)

n=800 0.114 0.130 (0.013)
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7. A Real Example. In this section, we carry out data analysis on the Welsh Nickel

Refinery Study which has been used frequently in literature to illustrate case-cohort studies

(see e.g., Lin and Ying 1993 and Barlow et. al. 1999). The original data were full cohort

data and published in Breslow and Day (1987). In this study, employees in a nickel refinery

in South Wales were investigated to determine the risk of developing nasal cancer. There

are 56 cancer cases among the 679 workers employed before 1925. The variables used in our

analysis are exposure (EXP) level and age at first employment (AFE). Exposure level is log

transformed to log(EXP +1) and age at first employment is transformed to log(AFE-10).

Table 3. Data Analyses of Time from the First Employment

to the Nasal Sinus Cancer Death for the Welsh Nickel Refiner Study

Parameters Full cohort subcohort case-cohort

log(EXP+1)

Est. −0.189 −0.561 −0.202

SE. 0.002 0.019 0.001

log(AFE-10)

Est. −0.617 −0.399 −0.467

SE. 0.003 0.036 0.03

We take a random sample of q = 20% of the full cohort to be a subcohort group.

The estimates are given in Table 3 and they are all significant. Here, our estimate of the

standard deviation of the BJE is based on formula (5.1).

In comparison to the data analysis based on the Cox regression model carried out by

Lin and Ying 1993, our estimates are more significant than theirs. Their z-scores are 3 and

4, respectively, while ours z-scores are at least 50.

8. Appendix I Consistency and asymptotic normality are important properties of

an estimator. For simplicity, we shall establish these properties for the weighted BJE β̂4

under a simple regularity condition. It is clear that the Subcohort BJE β̂1 is consistent

and asymptotic normal, though not efficient. Simulation results suggest that the other two

BJE’s β̂2 and β̂3 are inconsistent. Thus it is not of interests to study their asymptotic

properties.
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In our simulation study, we assume all underlying distributions are continuous. In the

literature, discrete assumption has been utilized in many pioneering papers on a new proce-

dure in order to justify its nice properties, without going through the lengthy investigation,

see for example, Miller (1980) on the PLE with right-censored data and Turnbull (1976)

on the GMLE with interval censored data. We also follow this path here. In some but not

all of the proofs, we make use of the following discrete assumption.

A5. ε, X and C all take on finitely many values.

Under A5, WLOG, we can assume that τ1 and τ2 do not depend on n. We shall first

discuss the consistency of S̃b given in (3.1), as it is needed in the main proof.

Lemma 1. Under assumptions A1, A2 and A5, S̃β in (3.1) satisfies S̃β(t) → S∗(t) a.s.

for each t, where S∗(t) = So(t)1(t ≤ τ1) + So(τ1)1(t ∈ (τ1, τ1 + 1)) + 1(t ≥ τ1 + 1).

Proof. Denote f∗ the density function of S∗. Notice that n/n1 → 1/q and n4/n3 →
P{δ=0}

P{η=1,δ=0} = 1/q. That is limn→∞ n/n1 = limn→∞ n4/n3. Thus WLOG, we only consider

the case w = n
n1

. By the definitions in (3.1), Rj, dj and S̃b are all functions of b. When

b = β, by the strong law of large numbers (SLLN), with probability one (w.p.1),

Rj

n
=

Pn
i=1(δi+

n
n1

(1−δi)ηi)1(Ti(b)≥tj)

n
(tj is given in (3.1))

→ P{T (β) ≥ tj, δ = 1}+ P{T (β) ≥ tj, δ = 0, η = 1}/q (by SLLN)

= P{T (β) ≥ tj, δ = 1}+ P{T (β) ≥ tj, δ = 0}P{η = 1}/q (by A1)

= P{T (β) ≥ tj}.

Thus,
dj

Rj
→ f∗(tj)P{C−βX≥tj}

S∗(tj−)P{C−βX≥tj} =
f∗(tj)

S∗(tj−)
and S̃β(t) →

∏
tj≤t(1 −

f∗(tj)
S∗(tj−)

) = S∗(t) for each

t ≤ τ1. The proof of t > τ1 is trivial by (3.1).

Lemma 2. F̃X is consistent under assumptions A1 and A2.

Proof.

limn→∞ F̃X(x) = limn→∞
1
n

∑
i/∈K(δi + n

n1
(1− δi)ηi)1(Xi ≤ x).

= P{δ = 1,X ≤ x}+ P{δ = 0,X ≤ x}
= P{X ≤ x}.

Note that the proof of the Lemma 2 does not invoke A3 and A5.

Lemma 3. Under assumptions A1, A2 and A5, F̃C in (3.1) satisfies that F̃C(t) → F ∗
C(t)

a.s. for each t, where F ∗
C(t) = FC(t)1(t < τ2) + 1(t ≥ τ2).
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Proof. Denote the density function of F ∗
C by f ∗C . With probability one,

Uj

n
=

Pn
i=1(1(Mi>sj)δi+

n
n1

(1−δi)ηi)1(Mi≥sj)

n
(sj is given in (3.1))

→ P{M > sj, δ = 1}+ P{M ≥ sj, δ = 0, η = 1}/q (by SLLN)

= P{M > sj, δ = 1}+ P{M ≥ sj, δ = 0}P{η = 1}/q (by A1)

= P{M > sj, δ = 1}+ P{M ≥ sj, δ = 0}
= P{M > sj}+ P{C = sj < ε + βX}.

Thus,

1− cj

Uj
→ 1−

1
q
f∗C(sj)P{ε+βX>sj ,η=1}

P{M>sj}+f∗C(sj)P{ε+βX>sj}

= 1−
1

P{η=1}f∗C(sj)P{ε+βX>sj}P{η=1}

P{M>sj}+f∗C(sj)P{ε+βX>sj}

=
P{M>sj}

P{M>sj}+f∗C(sj)P{ε+βX>sj}

=
1−F ∗

C(sj)

1−F ∗
C(sj−)

a.s. and 1− F̃C(t) →
∏

sj≤t
1−F ∗

C(sj)

1−F ∗
C(sj−)

= 1−F ∗
C(t) a.s. for t < maxj sj. The proof for t ≥ τ2

is trivial by (3.1).

We shall give a simple proof for the consistency and asymptotic normality of the

weighted BJE β̂4. Assumption A4 is crucial in the proof. Otherwise the asymptotic nor-

mality would not hold even under the full cohort case (see Kong and Yu (2005)). Moreover,

Yu and Wong (2002) show that the BJE is not unique in the full cohort case, thus it is also

not unique under the case-cohort designs either.

Under assumption A3, by (4.1) and (4.2), we have H̃(b) =
∑n

i=1Ai(b)−
∑n

i=1 Bi(b)b =

A(b)− B(b)b. By assumption A5, there are only m distinct values of O (= (M, δ, η,X)),

where m is finite. Let O1, ..., On be i.i.d. copies of O. By taking n large enough,

WLOG, we can assume that the first m such values are all distinct. Hereafter, denote

N i(b) = 1
n

∑n
j=1 1((Tj(b), δj, ηj,Xj) = (Ti(b), δi, ηi,Xi)), i = 1, ...,m, and N(b) = (N2(b),

..., Nm(b)) (as
∑m

i=1 N i = 1).

Theorem 1. Assume that A1 through A5 hold then a solution of the weighted BJE β̂4

in §3 is a rational function of N(b), say β̂4 = g(N(b)). Moreover, if g′(y) 6= 0, where

y = E(N(b)), then β̂4, is consistent and asymptotically normally distributed.

Proof. WLOG, we shall assume that S∗ = So and F ∗
C = FC , Otherwise, replace

(So, fo, FC) by (S∗, f∗, F
∗
C) in the proof.

The proof is quite long, we list the main steps. We shall show that
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(a) given a random sample, in a neighborhood of β, (A(b),B(b)) is constant in b;

(b) β̂4 = (B(β))−1A(β) if n is large enough. As (B(β))−1A(β) → β, we prove the

consistency of β̂4.

(c) S̃b, f̃X and f̃C are rational functions of N(b) for each given b;

(d) β̂4 is asymptotically normally distributed.

Step 1 (verify statement (a)). Let Tj,k = Tj,k(b) = Mj − bXk for j, k 6∈ K. Note that

K = {i : ηi + δi = 0} is the set of censored subjects not in sub-cohort. This notation

extends Tj = Tj,j and arises from the last term in expression (4.2). Since the weighted PLE

only assigns weights to exact observations Ti(b)’s unless Ti(b) is the largest observation,

we can define that Tj1,k1 = Tj2,k2 . if Tj1,k1 and Tj2,k2 are censored (i.e., δj1 = δj2 = 0), and

if there is no exact observation within Tj1,k1 and Tj2,k2 . In order to prove statement (a), we

shall show that if b1 and b2 are two values of b such that for all j, k 6∈ K,

(i) rank(Tj,k(b1)) = rank(Tj,k(b2)) for each right-censored Tj,k (i.e. δj = 0),

(ii) Ti(b1) < Tj,k(b1) iff Ti(b2) < Tj,k(b2), whenever (δi, δj) = (1, 0),

(iii) Ti(b1) 6= Tj,k(b1), whenever (δi, δj) = (1, 0),

then Ai(b1) = Ai(b2), Bi(b1) = Bi(b2), A(b1) = A(b2) and B(b1) = B(b2). When

δi = 1, by (4.2), (Ai(b),Bi(b)) = (Mi,Xi) and it is obvious that the above holds.

When δi = 0 and i /∈ K. Then by (4.2),

Ai =
1

S̃b(Ti)

∑
j:Tj>Ti

∑
h/∈K

f̃b(Tj)∑
h/∈K δh1(Th = Tj)

Mhδh1(Th = Tj)(Xi − X̃).

In order to prove Ai(b1) = Ai(b2) it then suffices to verify the following equations:

(1) S̃b1(Ti(b1)) = S̃b2(Ti(b2));

(2) {j /∈ K : Tj(b1) > Ti(b1)} = {j /∈ K : Tj(b2) > Ti(b2)};
(3)

f̃b1
(Tj(b1))P

h/∈K δh1(Th(b1)=Tj(b1))
=

f̃b2
(Tj(b2))P

h/∈K δh1(Th(b2)=Tj(b2))
if δj = 1.

Equation (1) follows from (3.1) and Equation (2) from conditions (i), (ii) and (iii) with

k = j. To prove equation (3), we first illustrate under a simple scenario. Let’s say there are



98 Yu and Yu

2 exact observations between Tj1(b1) and Tj2(b1), say T1(b1) < T2(b1), when b1 changes to

b2, there is a tie between the two, i.e. T1(b2) = T2(b2). From the definition of S̃b in (3.1),

the total weight assigned to the interval between two consecutive censored observations

Tj1(bh) and Tj2(bh) will be the same for h = 1 and h = 2 under conditions (i), (ii) and (iii),

and each of the exact observations Ti(bh) between two consecutive censored observations

Tj1(bh) and Tj2(bh) will be assigned equal weight. Hence under b = b1,

f̃b1(T1(b1))∑
h/∈K δh1(Th(b1) = T1(b1))

=
S̃b1(Tj1(b1)−)

Rj1(b1)
,

and

f̃b1(T2(b1))∑
h/∈K δh1(Th(b1) = T2(b1))

=
S̃b1(Tj1(b1)−)

{
1− 1

Rj1
(b1)

}
Rj1(b1)− 1

=
S̃b1(Tj1(b1)−)

Rj1(b1)
,

where Rj is the weighted risk set, i.e. Rj =
∑

h/∈K wi1(Th(b) ≥ Tj(b)). Under b = b2,

since T1(b2) = T2(b2), we have

f̃b2(Tj(b2))∑
h/∈K δh1(Th(b2) = Tj(b2))

=
S̃b2(Tj1(b2)−)

Rj1(b2)
=

S̃b1(Tj1(b1)−)

Rj1(b1)
,

which is the same as under b = b1. Similarly, we can show more general scenarios for

Equation (3) holds and we have Ai(b1) = Ai(b2) if δi = 0 and i /∈ K. The proof for

Bi(b1) = Bi(b2) if δi = 0 and i /∈ K is quite similar and is skipped.

Finally for i ∈ K. Note that Ai(b) =∑
j,k/∈K

∑
l:Tl>Tj,k

∑
h/∈K

f̃b(Tl)P
h/∈K δh1(Th=Tl)

Mhδh1(Th = Tl)f̃C(Mj)f̃X(Xk)(Xk − X̃)∑
j,k/∈K S̃b(Tj,k)f̃C(Mj)f̃X(Xk)

.

It suffices to show that for j, k 6∈ K,

(1′) S̃b1(Tj,k(b1)) = S̃b2(Tj,k(b2));

(2′) {l /∈ K : Tj(b1) > Ti,k(b1)} = {l /∈ K : Tj(b2) > Ti,k(b2)};
(3′)

f̃b1
(Tj(b1))P

h/∈K δh1(Th(b1)=Tj(b1))
=

f̃b2
(Tj(b2))P

h/∈K δh1(Th(b2)=Tj(b2))
if δj = 1.

The idea of the proof is similar to that in the foregoing case and we skip the proof.

Now under assumptions A4 and A5, it can be verified that

b = β is not a solution to Ti(b) = Tj,k(b) with (δi, δj) = (1, 0), and j /∈ K, (8.1)
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(that is, Ti = εi +βXi and Tj = Cj). Otherwise, Ti(b) = Tj,k(b), b = β and (δi, δj) = (1, 0)

are equivalent to εi +βXi−bXi = Cj −bXk and b = β, that is, εi = Cj −βXk. Since ε, C

and X are discrete (by A5) and independent (by A3), it implies that P{ε = C − βX} > 0,

which is impossible by A4.

By A5 and by our assumption, there are at most mo (≤ m2) distinct Tj,k’s and thus

there are at most m2
o many distinct equations of the form Ti,j(b) = Tk,h(b), where mo does

not change as n increases. Because (1) the equation Ti(b) = Tj,k(b) with (δi, δj) = (1, 0)

is an hyperplane in Rp and there are only finitely many such hyperplanes; and because

(2) β does not belong to any of such hyperplanes in (1) by the discussion in the previous

paragraph, and thus the distance from β to each of the hyperplanes in (1) is positive, there

is an open neighborhood of β, say O(β, c) (= {b : ||b−β|| < c}), with c > 0 such that the

three conditions (i) - (iii) hold for each (i, j, k) and for each pair of b1,b2 ∈ O(β, c). Thus

Ai(b),Bi(b),A(b) and B(b)are constants in b ∈ O(β, c). (8.2)

This complete the proof of statement (a).

Step 2 (verify statement (b)). Note that by A5 and A4, for n large enough, the distinct

hyperplanes Ti(b) = Tj(b) with (δi, δj) = (1, 0) remain the same and β does not belong to

these hyperplanes, thus O(β, c) will remain the same. Moreover, (Ai(b),Bi(b)) will take

at most m values, where m is finite and does not depend on n. By reordering, WLOG,

we can assume that the first m of (Ai(b),Bi(b))’s are distinct and we can correspond

(Ai(b),Bi(b)) to (Mi, δi, ηi,Xi), i = 1, ..., m, the m realizations of (M, δ, η,X). By (8.2),

we have

H̃(b)

n
=

m∑
i=1

NiAi(β)−
m∑

i=1

NiBi(β)b if b ∈ O(β, c).

Notice that S̃β(tj) → So(tj), f̃C(Mj) → fC(Mj) and f̃X(Xj) → fX(Xj) by Lemmas

1, 2 and 3, and that A1(β), ..., Am(β), B1(β), ..., Bm(β), and Nj converge by the SLLN.

N i → pi (
def
= P{(M, δ, η,X) = (Mi, δi, ηi,Xi)}) and by (8.2), for b ∈ O(β, c) and i = 1, ...,m,

Ai(b) = Ai(β) → (Xi − µx)

{
Miδi + (1− δi)ηiE(M |ε > Ti(β))

}
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+(1− δi)(1− ηi)
E

[
(X−µx)E

{
C∗1(ε∗>C−βX) |C,X

}]
E
{

So(C−βX)
} (

def
=Aio),

Bi(b) = Bi(β) → (Xi − µx)

{
X′

iδi + (1− δi)ηiE(X′|ε > Ti(β))

}
(8.3)

+(1− δi)(1− ηi)
E

[
(X−µx)E

{
(X∗

)′1(ε∗>C−βX)|C,X
}]

E
{

So(C−βX)
} (

def
=Bio),

with (ε∗, X∗, C∗) i.i.d. as (ε, X, C). Obviously, for b ∈ O(β, c),

lim
n→∞

H̃(b)

n
=

m∑
i=1

pi(Aio − Biob) a.s. (8.4)

Next we show that
∑m

i=1 piBio is nonsingular and

b = βis the unique solution to
m∑

i=1

pi

(
Aio − Biob

)
= 0. (8.5)

The non–singularity of
∑m

i=1 piBio can be established by the fact we show below, that

is,
∑m

i=1 piBio = E
{
δ(X − µx)(X − µx)′

}
and the assumption A2. Notice that under the

assumption A1, we can write Bio in (8.3) as

Bio = (Xi − µx)

[
X′

iδi + (1− δi)ηiµ
′
x

]
+(1− δi)(1− ηi)

E

[
E
{

(X−µx)1(ε∗>C−βX)|C,X
}]

µ′x

E
{

So(C−βX)
}

= δi(Xi − µx)(Xi − µx)′ +
{
δi + (1− δi)ηi

}
(Xi − µx)µ′x

+(1− δi)(1− ηi)
E
{

(X−µx)1(ε∗>C−βX)
}

µ′x

E
{

So(C−βX)
} .

Hence∑m
i=1 piBio =

∑m
i=1 piδi(Xi − µx)(Xi − µx)′ +

∑m
i=1 pi

{
δi + (1− δi)ηi

}
(Xi − µx)µ′x

+
∑m

i=1 pi(1− δi)(1− ηi)
E
{

(X−µx)1(ε∗>C−βX)
}

µ′x

E
{

So(C−βX)
} .

Recall that pi = P{(M, δ, η,X) = (Mi, δi, ηi,Xi)}. Hence we have
∑m

i=1(1 − δi)(1 −
ηi)pi = E

{
So(C−βX)(1− η)

}
= E

{
So(C−βX)

}
E(1− η), where the last equality follows

from A1. Now the third term in the right hand side of the foregoing equation can be written
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as E[(1− δ)(1− η)(X− µx)µ′x]. As a result,∑m
i=1 piBio = E

{
δ(X− µx)(X− µx)′

}
+ E

[{
δ + (1− δ)η

}
(X− µx)µ′x

]
+E
{

(1− δ)(1− η)(X− µx)µ′x
}

= E
{
δ(X− µx)(X− µx)′

}
.

For (8.5), verify that∑m
i=1 pi(Aio − Bioβ)

=
∑m

i=1 pi

{
(Xi − µx)

[
δiTi(β) + (1− δi)ηiE

{
ε|ε > Ti(β)

}]
+(1− δi)(1− ηi)

E

[
(X−µx)E

{
ε∗1(ε∗>C−βX)|C,X

}]
E
{

So(C−βX)
} }

=
∑m

i=1 pi

{
(Xi − µx)

[
δiTi(β) + (1− δi)ηiE

{
ε|ε > Ti(β)

}]
+(1− δi)(1− ηi)

E

[
(X−µx)ε1(ε>C−βX)

]
E
{

So(C−βX)
} }

=
∑m

i=1

[
E
{

(X− µx)ε1(δi = 1,X = Xi, Mi < C)
}

+E
{

(X− µx)ε1(δi = 0, ηi = 1,X = Xi, C = Mi)
}

+E
{

(X− µx)ε1(δi = 0, ηi = 0)
}]

= E
{
ε(X− µx)

}
= 0.

where the last equality follows from the assumption that ε and X are independent. More-

over, since
∑m

i=1 piBio is nonsingular the solution to
∑m

i=1 pi(Aio − Biob) = 0 is unique.

By (8.3) and (8.4),

m∑
i=1

NiAi(β)−
m∑

i=1

NiBi(β)b =
H̃(b)

n

→ 0 if b = β,

6→ 0 if b ∈ O(β, c) \ {β}.
(8.6)

It follows from (8.5) that if n is large enough,
∑m

i=1 NiBi(β) →
∑m

i=1 piBio, thus it is

nonsingular and the root of
∑m

i=1 NiAi(β)−
∑m

i=1 NiBi(β)b satisfies that

b̂ =
{ m∑

i=1

NiBi(β)
}−1

m∑
i=1

NiAi(β) = (B(β))−1A(β) → β as n →∞. (8.7)

Though b̂ may not be a BJE for a small n, for a large enough n, b̂ ∈ O(β, c) by (8.7), thus

0 = A(β)− B(β)b̂ = A(b̂)− B(b̂)b̂ = H̃(b̂). (8.8)
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As a consequence, β̂4 = b̂ = (B(β))−1A(β) if n is large enough. The consistency of the

BJE follows from (8.7) and (8.8).

Step 3 (verify statement (c)). Fix a b. By (3.1), we have S̃b(t) =
∏

j: tj≥t(1−
dj

Rj
), and

dj’s and Rj’s are only rational functions of N(b) and wi, which is again a rational function

of N(b). Hence,

S̃b(Ti(b)) is only a rational function of N(b) for each i. (8.9)

In view of the expressions of f̃X(Xi) and f̃C(Mi) (see (3.1)), they are only rational functions

of Xi, Mi, wi and N. X and C only take on finitely many values, if n is large then one can

treat {(Xi, Mi) : i = 1, ..., m} as fixed constants. Now it can be verified that

f̃X(Xi) and f̃C(Mi) are only rational functions of N(b) for each i. (8.10)

(8.9) and (8.10) yield statement (c).

Step 4 (verify statement (d)). Now from the expressions of Ai(β) and Bi(β) in (4.2),

it is seen that they are only rational functions of Mi, Xi, f̃X(Xi), f̃C(Mi) and f̃β(Ti(β)).

Again Mi and Xi can be viewed as constants, thus it follows from (8.2) and (8.3) that Ai(β)

and Bi(β) are only rational functions of N(β). Since A(β) and B(β) are linear functions of

Ai and Bi,

A(β) and B(β) are only rational functions of N(β) (8.11)

Since β̂4 = (B(β))−1A(β), under A5 and A4 and by (8.11) and (8.7) β̂4 is only a rational

function of N(β), and N(β) is a sample mean of a random vector with finite dimension

(m−1). Thus β̂4 = g(N), where g is a function on Rm−1 with continuous partial derivatives.

It follows that the asymptotic normality can now be shown using Slutsky’s theorem and

the central limit theorem, provided that g′(y) 6= 0, where y = E(N(b)). Of course, the

asymptotic covariance matrix of the BJE can be derived using the delta method as well

under A5 and A4. For simplicity, we skip the details.
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